[1] Acharyya, S., Banerjee, A., Boley, D.: Bregman divergences and triangle inequality. In: Proc. 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 476-484. SIAM.
[2] Chrzaszcz, K., Jachymski, J., Turoboś, F.:
On characterizations and topology of regular semimetric spaces. Publ. Math. Debr. 93 (2018), 87-105.
DOI
[3] Berg, M. de, Kreveld, M. van, Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. (Second rev. edition.). Springer, Berlin 2000.
[4] Ehm, W., Genton, M. G., Gneiting, T.:
Stationary covariances associated with exponentially convex functions. Bernoulli 9 (2004), 607-615.
DOI
[5] Elkan, C.: Using the triangle inequality to accelerate $k$-means. In: Proc. 20th International Conference on Machine Learning (ICML-03), 2003, pp. 147-153.
[6] Endres, D. M., Schindelin, J. E.:
A new metric for probability distributions. IEEE Trans. Inform. Theory 49 (2003), 1858-1860.
DOI
[7] Fuglede, B., Topsøe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Proc. International Symposium on Information Theory, 2004. ISIT, IEEE 2004, p. 31.
[8] Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., Stanley, H. E.:
Analysis of symbolic sequences using the Jensen-Shannon divergence. Phys. Rev. E (3), 65 (2002).
DOI
[9] Kafka, P., Österreicher, F., Vincze, I.:
On powers of $f$-divergences defining a distance. Stud. Sci. Math. Hung. 26 (1991), 415-422.
DOI
[10] Kalugin, G. A., Jeffrey, D. J.: Unimodal sequences show that Lambert {$W$} is Bernstein. C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), 50-56.
[11] Lin, J.:
Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory 37 (1991), 145-151.
DOI
[12] McCullagh, P.:
Möbius transformation and {C}auchy parameter estimation. Ann. Statist. 24 (1996), 787-808.
DOI 10.1214/aos/1032894465
[13] Nielsen, F.:
On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21 (2019), 485.
DOI
[14] Nielsen, F., Okamura, K.:
On $f$-divergences between Cauchy distributions. IEEE Trans. Inform. Theory 69 (2023), 3150-3171.
DOI
[15] Osán, T. M., Bussandri, D. G., Lamberti, P. W.:
Monoparametric family of metrics derived from classical Jensen-Shannon divergence. Physica A, 495 (2018), 336-344.
DOI
[16] Osán, T. M., Bussandri, D. G., Lamberti, P. W.:
Quantum metrics based upon classical Jensen-Shannon divergence. Physica A 594 (2022).
DOI
[17] Österreicher, F., Vajda, I.:
A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Stat. Math. 55 (2003), 639-653.
DOI
[18] Rachev, S. T., Klebanov, L. B., Stoyanov, S. V., Fabozzi, F. J.: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York 2013.
[19] Schilling, R. L., Song, R., Vondraček, Z.: Bernstein functions, volume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter Co., Berlin 2010.
[20] Schoenberg, I. J.:
Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 (1938), 522-536.
DOI
[21] Vajda, I.:
On metric divergences of probability measures. Kybernetika 45 (2009), 885-900.
DOI
[22] Verdú, S.:
The Cauchy distribution in information theory. Entropy 25 (2023), 346.
DOI
[23] Yianilos, P. N.: Data structures and algorithms for nearest neighbor. In: Proce. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM 66 (1993), p. 311.
[24] Zolotarev, V. M.: One-Dimensional Stable Distributions. Americal Mathematical Society, 1986.