[1] Mesiar, E. Aşıcıand R.:
On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.
DOI
[2] Aşıcı, E., Mesiar, R.:
On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Syst. 439 (2022), 102-125.
DOI
[3] Bodjanova, S., Kalina, M.:
Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014, pp. 61-66.
DOI
[4] Çaylı, G. D., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231.
DOI
[5] Çaylı, G. D.:
Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139.
DOI
[6] Çaylı, G. D., Mesiar, R.:
Methods for obtaining uninorms on some special classes of bounded lattices. Iran. J. Fuzzy Syst. 20 (2023), 111-126.
DOI
[7] Çaylı, G. D.:
A characterization of uninorms on bounded lattices via closure and interior operators. Kybernetika 59 (2023), 768-790.
DOI
[8] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order (Second edition). Cambridge University Press, New York 2002.
[9] Baets, B. De, Fodor, J.:
Van Melles combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136.
DOI
[10] Baets, B. De:
Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642.
DOI |
Zbl 1178.03070
[11] Dan, Y., Hu, B. Q., Qiao, J.:
New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.
DOI
[12] Dvořák, A., Holčapek, M.:
New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inform. Sci. 515 (2020), 116-131.
DOI
[13] Fodor, J., Yager, R. R., Rybalov, A.:
Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.
DOI |
Zbl 1232.03015
[14] Hua, X. J., Ji, W.:
Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.
DOI
[15] Ji, W.:
Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.
DOI
[16] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI
[17] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[19] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.:
A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015), 1021-1037.
DOI |
MR 3414365
[20] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.
DOI
[21] Schweizer, B., Sklar, A.:
Associative functions and statistical triangle inequalities. Pub. Math. Debrecen 8 (1961), 169-186.
DOI 10.5486/PMD.1961.8.1-2.16
[23] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.
DOI |
Zbl 1099.06004
[24] Sun, X. R., Liu, H. W.:
Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108.
DOI
[25] Wang, X., He, P.: Some conditions under which the binary operators constructed by Çaylı are uninorms. J. Northwest Univ. (Nat. Sci. Ed.) 52 (2022), 4, 528-538 (in Chinese).
[26] Xie, A. F., Li, S. J.:
On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104.
DOI
[27] Yager, R. R., Rybalov, A.:
Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.
DOI |
Zbl 0871.04007
[28] Yager, R. R.:
Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175.
DOI
[29] Yager, R. R.:
Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141 (2002), 217-232.
DOI |
Zbl 0998.90046
[30] Zhao, B., Wu, T.:
Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.
DOI
[31] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De:
A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121.
DOI