[1] Bhurjee, A. K., Panda, G.:
Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 52 (2015), 156-167.
DOI
[2] Bhurjee, A. K., Panda, G.:
Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243 (2016), 335-348.
DOI 10.1007/s10479-014-1644-0
[3] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983.
[4] Demyanov, V. F.: Convexification and Concavification of a Positively Homogeneous Function by the Same Family of Linear Functions. Report 3,208,802. Universita di Pisa, 1994.
[5] Giannessi, F., Mastroeni, G., Pellegrini, L.:
On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation. In: Vector Variational Inequalities and Vector Equilibria (F. Giannessi, ed.). Nonconvex Optim. Appl. 38 (2000), 153-215.
DOI 10.1007/978-1-4613-0299-5_11
[6] Gong, X. H.:
Optimality conditions for efficient solution to the vector equilibrium problems with constraints. Taiwanese J. Math. 16 (2012), 1453-1473.
DOI
[7] Gong, X. H.:
Optimality conditions for vector equilibrium problems. J. Math. Anal. Appl. 342 (2008), 1455-1466.
DOI
[8] Gong, X. H.:
Scalarization and optimality conditions for vector equilibrium problems. Nonlinear Analysis: Theory, Methods Appl. 73 (2010), 3598-3612.
DOI
[9] Ioffe, A. D.:
Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17 (1979), 245-250.
DOI
[10] Jayswal, A., Stancu-Minasian, I., Ahmad, I.:
On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput.218 (2011), 4119-4127.
DOI
[11] Jayswal, A., Stancu-Minasian, I., Banerjee, J.:
Optimality conditions and duality for interval-valued optimization problems using convexificators. Rendiconti del Circolo Matematico di Palermo 65 (2016), 17-32.
DOI
[12] Jeyakumar, V., Luc, D. T.:
Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999), 599-621.
DOI
[13] Jeyakumar, V., Luc, D. T.:
Approximate Jacobian matrices for nonsmooth continuous maps and C$^1$-optimization. SIAM J. Control Optim. 36 (1998), 1815-1832.
DOI
[14] Luu, D. V.:
Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications. J. Optim. Theory Appl. 171 (2016), 643-665.
DOI
[15] Luu, D. V.:
Necessary and sufficient conditions for efficiency via convexificators. J. Optim. Theory Appl. 160 (2014), 510-526.
DOI
[16] Luu, D. V.:
Convexificators and necessary conditions for efficiency. Optimization 63 (2014), 321-335.
DOI
[17] Luu, D. V., Hang, D. D.:
On optimality conditions for vector variational inequalities. J. Math. Anal. Appl. 412 (2014), 792-804.
DOI
[18] Luu, D. V., Hang, D. D.:
Efficient solutions and optimality conditions for vector equilibrium problems. Math. Methods Oper. Res. 79 (2014), 163-177.
DOI
[19] Mordukhovich, B. S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2 (1995) 211-228.
[20] Morgan, J., Romaniello, M.:
Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities. J. Optim. Theory Appl. 130 (2006), 309-316.
DOI
[21] Ward, D. E., Lee, G. M.:
On relations between vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 113 (2002), 583-596.
DOI
[22] Wu, H. C.:
On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008), 299-316.
DOI