Previous |  Up |  Next

Article

Keywords:
bounded lattices; closure operators; t-superconorms; uninorms
Summary:
In this paper, we provide new methods to construct uninorms by extending given uninorms on a subinterval of a bounded lattice with closure operators (resp. interior operators) and t-superconorms (resp. t-subnorms). Meanwhile, these methods for uninorms generalize some known methods for uninorms in the literature. An example is also provided to show our method.
References:
[1] Aşcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Systems 408 (2021), 65-85. DOI 
[2] Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Rhode Island, 1967. Zbl 0537.06001
[3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, September 11-13, Subotica, Serbia, 2014, 61-66.
[4] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231. DOI 
[5] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices. Int. J. General Systems 52 (2023), 4, 414-442. DOI 
[6] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. General Systems 50 (2021), 139-158. DOI 
[7] Çaylı, G. D.: An alternative construction of uninorms on bounded lattices. Int. J. General Systems 52 (2023), 5, 574-596. DOI 
[8] Çaylı, G. D.: Constructing uninorms on bounded lattices through closure and interior operators. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 32 (2024), 1, 109-129. DOI 
[9] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525. DOI 
[10] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inform. Sci. 181 (2011), 23-43. DOI 
[11] Hájek, P.: Combining Functions for Certainty Degrees in Consulting Systems. Int. J. Man-Machine Studies 22 (1985), 1, 59-76. DOI 
[12] Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton 1992.
[13] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382. DOI 
[14] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. DOI 
[15] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Systems 427 (2022), 109-131. DOI 
[16] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Systems 403 (2021), 38-55. DOI 
[17] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43. DOI 
[18] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Systems 308 (2017), 54-71. DOI 
[19] Klement, E. P., Mesiar, R., Pap, E.: A Universal Integral As Common Frame for Choquet and Sugeno Integral. IEEE Trans. Fuzzy Systems 18 (2010), 178-187. DOI 
[20] Menger, K.: Statistical metrics. In: Proc. National Academy of Sciences of the United States of America 8 (1942), 535-537. DOI  | Zbl 0063.03886
[21] Metcalfe, G., Montagna, F.: Substructural Fuzzy Logics. J. Symbolic Logic 72 (2007), 3, 834-864. DOI 
[22] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Systems 395 (2020), 93-106. DOI 
[23] Palmeira, E. S., Bedregal, B. C.: Extension of fuzzy logic operators defined on bounded lattices via retractions. Comput. Math. Appl. 63 (2012), 1026-1038. DOI 
[24] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 157 (2006), 1403-1416. DOI  | Zbl 1099.06004
[25] Takács, M.: Uninorm-Based Models for FLC Systems. J. Intell. Fuzzy Systems 19 (2008), 1, 65-73. DOI 
[26] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Systems 465 (2023), 108535. DOI 
[27] Xiu, Z. Y., Zheng, X.: A new approach to construct uninorms via uninorms on bounded lattices. Kybernetika 60 (2024), 2, 125-149. DOI 
[28] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. DOI  | Zbl 0871.04007
[29] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reasoning 130 (2021), 22-49. DOI 
[30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121. DOI 
Partner of
EuDML logo