[1] Birkhoff, G.:
Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island 1973.
Zbl 0537.06001
[2] Çaylı, G. D., Karaçal, F.:
Idempotent nullnorms on bounded lattices. Inf. Sci. 425 (2018), 154-163.
DOI
[3] Çaylı, G. D.:
Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746.
DOI
[4] Çaylı, G. D.:
Nullnorms on bounded lattices derived from t-norms and t-conorms. Inf. Sci. 512 (2020), 1134-1154.
DOI
[5] Çaylı, G. D.:
Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131.
DOI
[6] Çaylı, G. D.:
Generating nullnorms on some special classes of bounded lattices via closure and interior operators. Inf. Sci. 552 (2021), 118-141.
DOI
[7] Calvo, T., Baets, B. De, Fodor, J.:
The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.
DOI |
Zbl 0977.03026
[8] Baets, B. De, Meyer, H. De, Schuymer, B. De, Jenei, S.:
Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welf. 26 (2006), 217-238.
DOI
[9] Baets, B. De, Loof, K. De, Meyer, H. De:
A frequentist view on cycle-transitivity of reciprocal relations. Fuzzy Sets Syst. 281 (2015), 198-218.
DOI
[10] Donald, J., Arrigo, J.:
Non-associative modular lattices. Arch. Math. 22 (1971), 18-23.
DOI
[11] Drewniak, J., Drygaś, P., Rak, E.:
Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657.
DOI
[12] Drygaś, P.:
A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461.
DOI
[13] Dubois, D., Prade, H.:
A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121.
DOI |
Zbl 0582.03040
[14] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publishers, Boston, 2000.
[15] Ertuğrul, Ü.:
Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109.
DOI
[16] Fried, E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Math. 13 (1970), 151-164.
[17] Fried, E., Grätzer, G.:
Some examples of weakly associative lattices. Colloq. Math. 27 (1973), 215-221.
DOI
[18] Fried, E., Sós, V. T.:
Weakly associative lattices and projective planes. Algebra Univers. 5 (1975), 114-119.
DOI
[19] Gladstien, K.:
A characterization of complete trellises of finite length. Algebra Univers. 3 (1973), 341-344.
DOI
[20] Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton, 1992.
[21] Homenda, W., Jastrzebska, A., Pedrycz, W.:
Multicriteria decision making inspired by human cognitive processes. Appl. Math. Comput. 290 (2016), 392-411.
DOI
[22] Hua, X. J.:
New constructions of nullnorms on bounded lattices. Fuzzy Sets Syst. 439 (2022), 126-141.
DOI
[23] İnce, M. A., Karaçal, F., Mesiar, R.:
Medians and nullnorms on bounded lattices. Fuzzy Sets Syst. 289 (2016), 74-81.
DOI
[24] Kerr, B., Riley, M. A., Feldman, M. W., Bohannan, B. J. M.:
Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418 (2002), 171-174.
DOI
[25] Karaçal, F., İnce, M. A., Mesiar, R.:
Nullnorms on bounded lattice. Inf. Sci. 325 (2015), 227-236.
DOI
[26] Kong, Y., Zhao, B.:
Uninorms on bounded trellises. Fuzzy Sets Syst. 481 (2024), 108898.
DOI
[27] Li, G., Liu, H. W., Su, Y.:
On the conditional distributivity of nullnorms over uninorms. Inf. Sci. 317 (2015), 157-169.
DOI
[28] Mas, M., Monserrat, M., Ruiz, D., Torrens, J.:
Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets Syst. 26 (2015), 20-32.
DOI
[29] Qin, F., Zhao, B.:
The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458.
DOI |
Zbl 1077.03514
[30] Qiao, J. S., Hu, B. Q.:
On the migrativity of uninorms and nullnorms over overlap and grouping functions. Fuzzy Sets Syst. 346 (2018), 1-54.
DOI
[31] Skala, H.:
Trellis theory. Algebra Univers. 1 (1971), 218-233.
DOI
[32] Sun, X. R., Liu, H. W.:
Representation of nullnorms on bounded lattices. Inf. Sci. 539 (2020), 269-276.
DOI
[33] Wang, Z. D., Ouyang, Y., Zhang, H. P., Baets, B. De:
A note on the representation theorem for nullnorms on bounded lattices. Fuzzy Sets Syst. 472 (2023), 108680.
DOI
[34] Xiu, Z. Y., Zheng, X.:
Nullnorms on bounded trellises. arXiv preprint arXiv: 2408.09321, 2024.
DOI
[35] Zhang, H. P., Wang, Z. D., Ouyang, Y., Baets, B. De:
A representation of nullnorms on a bounded lattice in terms of beam operations. Fuzzy Sets Syst. 427 (2022), 149-160.
DOI
[36] Zhang, H. P., Ouyang, Y., Wang, Z. D., Baets, B. De:
A characterization of idempotent nullnorms on bounded lattices. Inf. Sci. 586 (2022), 676-687.
DOI
[37] Zhang, H. P., Ouyang, Y., Wang, Z. D., Baets, B. De:
A complete representation theorem for nullnorms on bounded lattices with ample illustrations. Fuzzy Sets Syst. 439 (2022), 157-169.
DOI
[38] Zedam, L., Baets, B. De:
Triangular norms on bounded trellises. Fuzzy Sets Syst. 462 (2023), 108468.
DOI
[39] Zong, W. W., Su, Y., Liu, H. W.:
Migrative property for nullnorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 749-759.
DOI