Title:
|
Superlinear equations, potential theory and weighted norm inequalities (English) |
Author:
|
Verbitsky, Igor E. |
Language:
|
English |
Journal:
|
Nonlinear Analysis, Function Spaces and Applications |
Volume:
|
Vol. 6 |
Issue:
|
1998 |
Year:
|
|
Pages:
|
223-269 |
. |
Category:
|
math |
. |
MSC:
|
31B10 |
MSC:
|
31B20 |
MSC:
|
35J60 |
MSC:
|
35R05 |
MSC:
|
42B25 |
MSC:
|
45G10 |
MSC:
|
46E35 |
MSC:
|
47J05 |
idZBL:
|
Zbl 0961.31002 |
idMR:
|
MR1777717 |
. |
Date available:
|
2009-10-08T09:48:08Z |
Last updated:
|
2012-08-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/702469 |
. |
Reference:
|
[AH] Adams D. R., Hedberg L. I.: Function spaces and potential theory.Springer-Verlag, Berlin 1996. MR 1411441 |
Reference:
|
[AP] Adams D. R., Pierre M.: Capacitary strong type estimates in semilinear problems.Ann. Inst. Fourier (Grenoble) 41 (1991), 117–135. Zbl 0741.35012, MR 1112194 |
Reference:
|
[Ba] Baras P.: Semilinear problem with convex nonlinearity.In: Recent Advances in Nonlinear Elliptic and Parabolic Problems. P. Bénilan, M. Chipot, L. C. Evans and M. Pierre (eds.), Pitman Research Notes in Math. Sciences, 208, Longman, Harlow 1989, 202–215. Zbl 0768.35030, MR 1035008 |
Reference:
|
[BaP] Baras P., Pierre M.: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones.Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185–212. Zbl 0599.35073, MR 0797270 |
Reference:
|
[Bas] Bass R. F.: Probabilistic techniques in analysis.Springer-Verlag, Berlin 1995. Zbl 0817.60001, MR 1329542 |
Reference:
|
[Bi] Birkhoff G.: Lattice theory.Amer. Math. Soc., Amer. Math. Soc. Colloq. Publ., 25, Providence, RI 1979. Zbl 0505.06001 |
Reference:
|
[BCa] Brezis H., Cabre X.: Some simple nonlinear PDE’s without solutions.Preprint 1997, 1–37. MR 1638143 |
Reference:
|
[COV] Cascante C., Ortega J. M., Verbitsky I. E.: On imbedding potential spaces into $L^q(d\mu )$.To appear in Proc. London Math. Soc. |
Reference:
|
[ChZh] Chung K. L., Zhao Z.: From Brownian motion to Schrödinger’s equation.Springer-Verlag, Berlin 1995. Zbl 0819.60068, MR 1329992 |
Reference:
|
[FSt] Fefferman C., Stein E. M.: Some maximal inequalities.Amer. J. Math. 93 (1971) 107–115. Zbl 0222.26019, MR 0284802 |
Reference:
|
[Fe] Fefferman R.: Strong differentiation with respect to measures.Amer. J. Math. 103 (1981), 33–40. Zbl 0475.42019, MR 0601461 |
Reference:
|
[FrJ] Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34–170. Zbl 0716.46031, MR 1070037 |
Reference:
|
[G] Gurka P.: Generalized Hardy’s inequality.Čas. Pěstování Mat. 109 (1984), 194–203. Zbl 0537.26009, MR 0744875 |
Reference:
|
[H] Hansson K.: Imbedding theorems of Sobolev type in potential theory.Math. Scand. 45 (1979), 77–102. Zbl 0437.31009, MR 0567435 |
Reference:
|
[HMV] Hansson K., Maz’ya V. G. Verbitsky I. E.: Criteria of solvability for multidimensional Riccati’s equations.Ark. Mat. 37 (1999), 87–120. MR 1673427 |
Reference:
|
[Har] Hartman P.: Ordinary differential equations.Birkhäuser, Boston 1982. Zbl 0476.34002, MR 0658490 |
Reference:
|
[HW] Hedberg L. I., Wolff, Th. H.: Thin sets in nonlinear potential theory.Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. Zbl 0508.31008, MR 0727526 |
Reference:
|
[Hi] Hille E.: Nonoscillation theorems.Trans. Amer. Math. Soc 64 (1948), 234–252. MR 0027925 |
Reference:
|
[Im] Imm, Ch.: Semilinear ODEs and Hardy’s inequality with weights.M.S. Thesis, Univ. of Missouri, Columbia 1997, 1–21. |
Reference:
|
[KV] Kalton N. J., Verbitsky I. E.: Nonlinear equations and weighted norm inequalities.To appear in Trans. Amer. Math. Soc. Zbl 0948.35044, MR 1475688 |
Reference:
|
[KiMa] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations.Acta Math. 172 (1994), 137–161. MR 1264000 |
Reference:
|
[KrZ] skii M. A. Krasnosel,’ Zabreiko P. P.: Geometrical methods of nonlinear analysis.Springer-Verlag, Berlin 1984. MR 0736839 |
Reference:
|
[KuT] Kufner A., Triebel H.: Generalization of Hardy’s inequality.Conf. Semin. Mat. Univ. Bari 156 (1978), 1–21. MR 0541051 |
Reference:
|
[L] Lions P. L.: On the existence of positive solutions of semilinear elliptic equations.SIAM Rev. 24 (1982), 441–467. Zbl 0511.35033, MR 0678562 |
Reference:
|
[MaZi] Malý J., Ziemer W. P.: Fine Regularity of solutions of elliptic partial differential equations.Amer. Math. Soc., Providence, RI 1997. Zbl 0882.35001, MR 1461542 |
Reference:
|
[M1] Maz’ya V. G. : Classes of domains and embedding theorems for functional spaces.Dokl. Akad. Nauk SSSR, 133 (1960), 527–530. MR 0126152 |
Reference:
|
[M2] Maz’ya V. G. : On the theory of the $n$-dimensional Schrödinger operator.Izv. Akad. Nauk SSSR, ser. Mat. 28 (1964), 1145–1172. MR 0174879 |
Reference:
|
[M3] Maz’ya V. G. : Sobolev Spaces.Springer-Verlag, Berlin 1985. MR 0817985 |
Reference:
|
[MNe] Maz’ya V. G., Netrusov Y.: Some counterexamples for the theory of Sobolev spaces on bad domains.Potential Anal. 4 (1995), 47–65. Zbl 0819.46023, MR 1313906 |
Reference:
|
[MV] Maz’ya V. G., Verbitsky I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers.Ark. Mat. 33 (1995), 81–115. Zbl 0834.31006, MR 1340271 |
Reference:
|
[Mu] Muckenhoupt B.: Hardy’s inequalities with weights.Studia Math. 44 (1972), 31–38. |
Reference:
|
[Na] Naïm L. : Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel.Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281. Zbl 0086.30603, MR 0100174 |
Reference:
|
[NTV] Nazarov F., Treil S., Volberg A.: Bellman functions and two weight inequalities for Haar multipliers.Preprint. Zbl 0951.42007, MR 1685781 |
Reference:
|
[Ro] Rochberg R. : Size estimates for eigenvalues of singular integral operators and Schrödinger operators and for derivatives of quasiconformal mappings.Amer. J. Math. 117 (1995), 711–771. Zbl 0845.42006, MR 1333943 |
Reference:
|
[S1] Sawyer E. T.: Weighted norm inequalities for fractional maximal operators.Can. Math. Soc. Conf. Proceedings 1 (1981), 283–309. Zbl 0546.42018, MR 0670111 |
Reference:
|
[S2] Sawyer E. T.: A characterization of a two-weight norm inequality for maximal operators.Studia Math. 75 (1982), 1–11 Zbl 0508.42023, MR 0676801 |
Reference:
|
[S3] Sawyer E. T.: Two weight norm inequalities for certain maximal and integral operators.Trans. Amer. Math. Soc. 308 (1988), 533–545. MR 0930072 |
Reference:
|
[SW] Sawyer E. T., Wheeden R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–874. Zbl 0783.42011, MR 1175693 |
Reference:
|
[SWZ] Sawyer E. T., Wheeden R. L., Zhao S.: Weighted norm inequalities for operators of potential type and fractional maximal functions.Potential Anal. 5 (1996), 523–580. Zbl 0873.42012, MR 1437584 |
Reference:
|
[Se] Selmi M.: Comparaison des noyaux de Green sur les domaines $C^{1,1}$.Rev. Roumaine Math. Pures Appl. 36 (1991), 91–100. MR 1144538 |
Reference:
|
[St] Stein E. M.: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton 1970. Zbl 0207.13501, MR 0290095 |
Reference:
|
[To] Tomaselli G. : A class of inequalities.Boll. Un. Mat. Ital. 4 (1969), 622–631. Zbl 0188.12103, MR 0255751 |
Reference:
|
[V1] Verbitsky I. E.: Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through $L^{p, \infty }$.Integral Equations Operator Theory 15 (1992), 121–153. MR 1134691 |
Reference:
|
[V2] Verbitsky I. E.: Imbedding and multiplier theorems for discrete Littlewood–Paley spaces.Pacific J. Math. 176 (1996), 529-556. Zbl 0865.42009, MR 1435004 |
Reference:
|
[VW1] Verbitsky I. E., Wheeden R. L.: Weighted inequalities for fractional integrals and applications to semilinear equations.J. Funct. Anal. 129 (1995), 221–241. MR 1322649 |
Reference:
|
[VW2] Verbitsky I. E., Wheeden R. L.: Weighted norm inequalities for integral operators.Trans. Amer. Math. Soc. 350 (1998), 3371–3391. Zbl 0920.42007, MR 1443202 |
Reference:
|
[Wi] Widman K.-O.: Inequalities for the Green function and boundary continuity of the gradients of solutions of elliptic differential equations.Math. Scand. 21 (1967), 13–67. MR 0239264 |
Reference:
|
[Zh] Zhao Z.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge.J. Math. Anal. Appl. 116 (1986), 309–334. Zbl 0608.35012, MR 0842803 |
. |