Previous |  Up |  Next

Article

Title: Superlinear equations, potential theory and weighted norm inequalities (English)
Author: Verbitsky, Igor E.
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 6
Issue: 1998
Year:
Pages: 223-269
.
Category: math
.
MSC: 31B10
MSC: 31B20
MSC: 35J60
MSC: 35R05
MSC: 42B25
MSC: 45G10
MSC: 46E35
MSC: 47J05
idZBL: Zbl 0961.31002
idMR: MR1777717
.
Date available: 2009-10-08T09:48:08Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702469
.
Reference: [AH] Adams D. R., Hedberg L. I.: Function spaces and potential theory.Springer-Verlag, Berlin 1996. MR 1411441
Reference: [AP] Adams D. R., Pierre M.: Capacitary strong type estimates in semilinear problems.Ann. Inst. Fourier (Grenoble) 41 (1991), 117–135. Zbl 0741.35012, MR 1112194
Reference: [Ba] Baras P.: Semilinear problem with convex nonlinearity.In: Recent Advances in Nonlinear Elliptic and Parabolic Problems. P. Bénilan, M. Chipot, L. C. Evans and M. Pierre (eds.), Pitman Research Notes in Math. Sciences, 208, Longman, Harlow 1989, 202–215. Zbl 0768.35030, MR 1035008
Reference: [BaP] Baras P., Pierre M.: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones.Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185–212. Zbl 0599.35073, MR 0797270
Reference: [Bas] Bass R. F.: Probabilistic techniques in analysis.Springer-Verlag, Berlin 1995. Zbl 0817.60001, MR 1329542
Reference: [Bi] Birkhoff G.: Lattice theory.Amer. Math. Soc., Amer. Math. Soc. Colloq. Publ., 25, Providence, RI 1979. Zbl 0505.06001
Reference: [BCa] Brezis H., Cabre X.: Some simple nonlinear PDE’s without solutions.Preprint 1997, 1–37. MR 1638143
Reference: [COV] Cascante C., Ortega J. M., Verbitsky I. E.: On imbedding potential spaces into $L^q(d\mu )$.To appear in Proc. London Math. Soc.
Reference: [ChZh] Chung K. L., Zhao Z.: From Brownian motion to Schrödinger’s equation.Springer-Verlag, Berlin 1995. Zbl 0819.60068, MR 1329992
Reference: [FSt] Fefferman C., Stein E. M.: Some maximal inequalities.Amer. J. Math. 93 (1971) 107–115. Zbl 0222.26019, MR 0284802
Reference: [Fe] Fefferman R.: Strong differentiation with respect to measures.Amer. J. Math. 103 (1981), 33–40. Zbl 0475.42019, MR 0601461
Reference: [FrJ] Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34–170. Zbl 0716.46031, MR 1070037
Reference: [G] Gurka P.: Generalized Hardy’s inequality.Čas. Pěstování Mat. 109 (1984), 194–203. Zbl 0537.26009, MR 0744875
Reference: [H] Hansson K.: Imbedding theorems of Sobolev type in potential theory.Math. Scand. 45 (1979), 77–102. Zbl 0437.31009, MR 0567435
Reference: [HMV] Hansson K., Maz’ya V. G. Verbitsky I. E.: Criteria of solvability for multidimensional Riccati’s equations.Ark. Mat. 37 (1999), 87–120. MR 1673427
Reference: [Har] Hartman P.: Ordinary differential equations.Birkhäuser, Boston 1982. Zbl 0476.34002, MR 0658490
Reference: [HW] Hedberg L. I., Wolff, Th. H.: Thin sets in nonlinear potential theory.Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. Zbl 0508.31008, MR 0727526
Reference: [Hi] Hille E.: Nonoscillation theorems.Trans. Amer. Math. Soc 64 (1948), 234–252. MR 0027925
Reference: [Im] Imm, Ch.: Semilinear ODEs and Hardy’s inequality with weights.M.S. Thesis, Univ. of Missouri, Columbia 1997, 1–21.
Reference: [KV] Kalton N. J., Verbitsky I. E.: Nonlinear equations and weighted norm inequalities.To appear in Trans. Amer. Math. Soc. Zbl 0948.35044, MR 1475688
Reference: [KiMa] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations.Acta Math. 172 (1994), 137–161. MR 1264000
Reference: [KrZ] skii M. A. Krasnosel,’ Zabreiko P. P.: Geometrical methods of nonlinear analysis.Springer-Verlag, Berlin 1984. MR 0736839
Reference: [KuT] Kufner A., Triebel H.: Generalization of Hardy’s inequality.Conf. Semin. Mat. Univ. Bari 156 (1978), 1–21. MR 0541051
Reference: [L] Lions P. L.: On the existence of positive solutions of semilinear elliptic equations.SIAM Rev. 24 (1982), 441–467. Zbl 0511.35033, MR 0678562
Reference: [MaZi] Malý J., Ziemer W. P.: Fine Regularity of solutions of elliptic partial differential equations.Amer. Math. Soc., Providence, RI 1997. Zbl 0882.35001, MR 1461542
Reference: [M1] Maz’ya V. G. : Classes of domains and embedding theorems for functional spaces.Dokl. Akad. Nauk SSSR, 133 (1960), 527–530. MR 0126152
Reference: [M2] Maz’ya V. G. : On the theory of the $n$-dimensional Schrödinger operator.Izv. Akad. Nauk SSSR, ser. Mat. 28 (1964), 1145–1172. MR 0174879
Reference: [M3] Maz’ya V. G. : Sobolev Spaces.Springer-Verlag, Berlin 1985. MR 0817985
Reference: [MNe] Maz’ya V. G., Netrusov Y.: Some counterexamples for the theory of Sobolev spaces on bad domains.Potential Anal. 4 (1995), 47–65. Zbl 0819.46023, MR 1313906
Reference: [MV] Maz’ya V. G., Verbitsky I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers.Ark. Mat. 33 (1995), 81–115. Zbl 0834.31006, MR 1340271
Reference: [Mu] Muckenhoupt B.: Hardy’s inequalities with weights.Studia Math. 44 (1972), 31–38.
Reference: [Na] Naïm L. : Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel.Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281. Zbl 0086.30603, MR 0100174
Reference: [NTV] Nazarov F., Treil S., Volberg A.: Bellman functions and two weight inequalities for Haar multipliers.Preprint. Zbl 0951.42007, MR 1685781
Reference: [Ro] Rochberg R. : Size estimates for eigenvalues of singular integral operators and Schrödinger operators and for derivatives of quasiconformal mappings.Amer. J. Math. 117 (1995), 711–771. Zbl 0845.42006, MR 1333943
Reference: [S1] Sawyer E. T.: Weighted norm inequalities for fractional maximal operators.Can. Math. Soc. Conf. Proceedings 1 (1981), 283–309. Zbl 0546.42018, MR 0670111
Reference: [S2] Sawyer E. T.: A characterization of a two-weight norm inequality for maximal operators.Studia Math. 75 (1982), 1–11 Zbl 0508.42023, MR 0676801
Reference: [S3] Sawyer E. T.: Two weight norm inequalities for certain maximal and integral operators.Trans. Amer. Math. Soc. 308 (1988), 533–545. MR 0930072
Reference: [SW] Sawyer E. T., Wheeden R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–874. Zbl 0783.42011, MR 1175693
Reference: [SWZ] Sawyer E. T., Wheeden R. L., Zhao S.: Weighted norm inequalities for operators of potential type and fractional maximal functions.Potential Anal. 5 (1996), 523–580. Zbl 0873.42012, MR 1437584
Reference: [Se] Selmi M.: Comparaison des noyaux de Green sur les domaines $C^{1,1}$.Rev. Roumaine Math. Pures Appl. 36 (1991), 91–100. MR 1144538
Reference: [St] Stein E. M.: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton 1970. Zbl 0207.13501, MR 0290095
Reference: [To] Tomaselli G. : A class of inequalities.Boll. Un. Mat. Ital. 4 (1969), 622–631. Zbl 0188.12103, MR 0255751
Reference: [V1] Verbitsky I. E.: Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through $L^{p, \infty }$.Integral Equations Operator Theory 15 (1992), 121–153. MR 1134691
Reference: [V2] Verbitsky I. E.: Imbedding and multiplier theorems for discrete Littlewood–Paley spaces.Pacific J. Math. 176 (1996), 529-556. Zbl 0865.42009, MR 1435004
Reference: [VW1] Verbitsky I. E., Wheeden R. L.: Weighted inequalities for fractional integrals and applications to semilinear equations.J. Funct. Anal. 129 (1995), 221–241. MR 1322649
Reference: [VW2] Verbitsky I. E., Wheeden R. L.: Weighted norm inequalities for integral operators.Trans. Amer. Math. Soc. 350 (1998), 3371–3391. Zbl 0920.42007, MR 1443202
Reference: [Wi] Widman K.-O.: Inequalities for the Green function and boundary continuity of the gradients of solutions of elliptic differential equations.Math. Scand. 21 (1967), 13–67. MR 0239264
Reference: [Zh] Zhao Z.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge.J. Math. Anal. Appl. 116 (1986), 309–334. Zbl 0608.35012, MR 0842803
.

Files

Files Size Format View
NAFSA_098-1998-1_9.pdf 441.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo