Previous |  Up |  Next

Article

Title: A la recherche du spectre perdu: An invitation to nonlinear spectral theory (English)
Author: Appell, Jürgen
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 7
Issue: 2002
Year:
Pages: 1-20
.
Category: math
.
Summary: We give a survey on spectra for various classes of nonlinear operators, with a particular emphasis on a comparison of their advantages and drawbacks. Here the most useful spectra are the asymptotic spectrum by M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by W. Feng (1997), and the local spectrum (called “phantom”) by P. Santucci and M. Väth (2000). In the last part we discuss these spectra for homogeneous operators (of any degree), and derive a discreteness result and a nonlinear Fredholm alternative for such operators. This may be applied to an eigenvalue problem for the $p$-Laplace operator which arises in various fields of applied mathematics, mechanics, and physics. (English)
Keyword: Nonlinear spectrum
Keyword: nonlinear eigenvalue problem
Keyword: homogeneous operator
Keyword: coincidence theorem
Keyword: discreteness theorem
Keyword: nonlinear Fredholm alternative
Keyword: $p$-Laplace operator
MSC: 35J60
MSC: 47A10
MSC: 47H09
MSC: 47H10
MSC: 47J05
MSC: 47J10
MSC: 47J25
.
Date available: 2009-10-08T09:49:25Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702482
.
Reference: [1] Appell J., Pascale E. De, Vignoli A.: A comparison of different spectra for nonlinear operators.Nonlinear Anal., Theory Methods Appl. 40A (2000), 73–90. Zbl 0956.47035, MR 2001g:47117. Zbl 0956.47035
Reference: [2] Appell J., Dörfner M.: Some spectral theory for nonlinear operators.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1955–1976. Zbl 0876.47042, MR 98e:47098. Zbl 0876.47042, MR 1436365
Reference: [3] Appell J., Giorgieri E., Väth M.: Nonlinear spectral theory for homogeneous operators.Nonlinear Funct. Anal. Appl. 7 (2002), 589–618. Zbl 1045.47053, MR 1959638
Reference: [4] Binding P. A., Drábek P., Huang Y. X.: On the Fredholm alternative for the $p$-Laplacian.Proc. Amer. Math. Soc. 125 (1997), 3555–3559. Zbl 0882.35049, MR 98b:35058. Zbl 0882.35049, MR 1416077
Reference: [5] Pino M. del, Drábek P., Manásievich R.: The Fredholm alternative at the first eigenvalue for the one dimensional $p$-Laplacian.J. Differ. Equations 151 (1999), 386–419. Zbl 0931.34065, MR 99m:34042. MR 1669705
Reference: [6] Drábek P.: On the Fredholm alternative for nonlinear homogeneous operators.In: Applied nonlinear analysis (A. Sequeira et al., eds.). Kluwer Academic/Plenum Publishing, New York, 1999, 41–48. Zbl 0956.47036, MR 1 727 439. Zbl 0956.47036, MR 1727439
Reference: [7] Drábek P.: Analogy of the Fredholm alternative for nonlinear operators.RIMS Kokyuroku 1105 (1999), 31–38. Zbl 0951.47503. Zbl 0951.47503, MR 1747554
Reference: [8] Drábek P.: Fredholm alternative for the $p$-Laplacian: yes or no?.In: Function Spaces, Differential Operators and Nonlinear Analysis. Proceedings of the conference, Syöte, Finland, June 10–16, 1999 (V. Mustonen and J. Rákosník, eds.). Math. Inst. Acad. Sci. Czech Rep., Prague, 2000, 57–64. Zbl 0966.34012, MR 2000m:34042. MR 1755297
Reference: [9] Drábek P., Girg P., Manásievich R.: Generic Fredholm alternative-type results for the one dimensional $p$-Laplacian.Nonlinear Differential Equations Appl. 8 (2001), 285–298. Zbl pre01652489, MR 2002f:34027. MR 1841260
Reference: [10] Drábek P., Holubová G.: Fredholm alternative for the $p$-Laplacian in higher dimensions.J. Math. Anal. Appl. 263 (2001), 182–194. Zbl 1002.35046,MR 2002h:35083. MR 1864314
Reference: [11] Feng W.: A new spectral theory for nonlinear operators and its applications.Abstr. Appl. Anal. 2 (1997), 163–183. Zbl 0952.47047, MR 99d:47061. Zbl 0952.47047, MR 1604177
Reference: [12] Fučík S.: Fredholm alternative for nonlinear operators in Banach spaces and its applications to differential and integral equations.Commentat. Math. Univ. Carol. 11 (1970), 271–284. Zbl 0995.42801, MR 42 #909. MR 0266000
Reference: [13] Furi M.: Stably solvable maps are unstable under small perturbations.Z. Anal. Anwend. 21 (2002), 203–208. Zbl pre01779543, MR 1 916 412. Zbl 1016.47042, MR 1916412
Reference: [14] Furi M., Martelli M., Vignoli A.: Stably solvable operators in Banach spaces.Atti Accad. Naz. Lincei, VIII. Ser., Rend. Cl. Sci. Fis. Mat. Nat. 60 (1976), 21–26. Zbl 0361.47024, MR 58 #7251. Zbl 0361.47024, MR 0487632
Reference: [15] Furi M., Martelli M., Vignoli A.: Contributions to the spectral theory for nonlinear operators in Banach spaces.Ann. Mat. Pura Appl., IV. Ser. 118 (1978), 229–294. Zbl 0409.47043, MR 80k:47070. Zbl 0409.47043, MR 0533609
Reference: [16] Furi M., Martelli M., Vignoli A.: On the solvability of nonlinear operator equations in normed spaces.Ann. Mat. Pura Appl., IV. Ser. 128 (1980), 321–343. Zbl 0456.47051, MR 83h:47047. Zbl 0456.47051, MR 0591562
Reference: [17] Kachurovskij R. I.: Regular points, spectrum and eigenfunctions of nonlinear operators.(Russian). Dokl. Akad. Nauk SSSR 188 (1969) 274–277. English transl. in Soviet Math. Dokl. 10 (1969), 1101–1105. Zbl 0197.40402. Zbl 0197.40402, MR 0251599
Reference: [18] Maddox I. J., Wickstead A. W.: The spectrum of uniformly Lipschitz mappings.Proc. Royal Irish Acad., Sect. A 89 (1989), 101–114. Zbl 0661.47048, MR 90k:47120. Zbl 0661.47048, MR 1021228
Reference: [19] Minty G.: Monotone (nonlinear) operators in Hilbert space.Duke Math. J. 29 (1962), 341–346. Zbl 0111.31202, MR 29 #6319. Zbl 0111.31202, MR 0169064
Reference: [20] Nečas J.: Sur l’alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites.Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 23 (1969), 331–345. Zbl 0187.08103, MR 42 #2332. Zbl 0187.08103, MR 0267430
Reference: [21] Neuberger J. W.: Existence of a spectrum for nonlinear transformations.Pacific J. Math. 31 (1969), 157–159. Zbl 0182.47203, MR 41 #4329. Zbl 0182.47203, MR 0259696
Reference: [22] Pokhozhaev S. I.: Solvability of nonlinear equations with odd operators.(Russian). Funkts. Anal. Prilozh. 1 (1967), 66–73. Zbl 0165.49502, MR 36 #4396. English transl. in Funct. Anal. Appl. 1 (1967), 227–233. Zbl 0165.49502. Zbl 0165.49502, MR 0221344
Reference: [23] Rhodius A.: Über numerische Wertebereiche und Spektralwertabschätzungen.Acta Sci. Math. 47 (1984), 465–470. Zbl 0575.47005, MR 86i:47005. Zbl 0575.47005, MR 0783322
Reference: [24] Santucci P., Väth M.: On the definition of eigenvalues for nonlinear operators.Nonlin. Anal., Theory Methods Appl. 40A (2000), 565–576. Zbl 0956.47038, MR 2001g:47118. Zbl 0956.47038, MR 1768911
Reference: [25] Santucci P., Väth M.: Grasping the phantom: a new approach to nonlinear spectral theory.Ann. Mat. Pura Appl. 180 (2001), 255–284. Zbl 1150.47042, MR 1871616
Reference: [26] Väth M.: The Furi-Martelli-Vignoli spectrum vs. the phantom.Nonlinear Anal., Theory Methods Appl. 47 (2001), 2237–2248. Zbl 1042.47533, MR 1971633
.

Files

Files Size Format View
NAFSA_102-2002-1_3.pdf 395.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo