Previous |  Up |  Next

Article

Title: The commutators of analysis and interpolation (English)
Author: Cerdà, Joan
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 7
Issue: 2002
Year:
Pages: 21-72
.
Category: math
.
Summary: The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator $[T,\Omega]$ for linear operators $T$ and certain unbounded operators $\Omega$ that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that $\Omega$ appears as a combination of two admissible interpolation methods, $\Phi$ and $\Psi$, that correspond to $\Phi(F)=F(\vartheta)$ and $\Psi(f)=F'(\vartheta)$ in the case of the complex method, with $\Omega(f)=\Psi(F)$ if $\Phi(F)=f$ (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included. (English)
Keyword: Commutator
Keyword: interpolation
Keyword: complex method
Keyword: real method
Keyword: multiplier
MSC: 42B15
MSC: 46B70
MSC: 47B47
.
Date available: 2009-10-08T09:49:37Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702481
.
Reference: [BS] Bennett C., Sharpley B.: Interpolation of operators.Pure and Applied Mathematics 129. Academic Press, Inc., New York, 1988. Zbl 0647.46057, MR 89e:46001. Zbl 0647.46057, MR 0928802
Reference: [BL] Bergh J., Löfström J.: Interpolation spaces. An introduction.Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin, 1976. Zbl 0344.46071, MR 58 #2349. Zbl 0344.46071, MR 0482275
Reference: [BK] Brudnyǐ, Yu. A., Krugljak N. Ya.: Interpolation functors and interpolation spaces.North-Holland Math. Library 47. North Holland, Amsterdam, 1991. Zbl 0743.46082, MR 93b:46141. MR 1107298
Reference: [Ca] Calderón A. P.: Intermediate spaces and interpolation, the complex method.Studia Math. 24 (1964), 113–190. Zbl 0204.13703, MR 29 #5097. Zbl 0204.13703, MR 0167830
Reference: [CC1] Carro M. J., Cerdà J.: Complex interpolation and $L^p$ spaces.Studia Math. 99 (1991), 57–67. Zbl 0772.46041, MR 92j:46134. MR 1120739
Reference: [CC2] Carro M. J., Cerdà J.: On the interpolation of analytic families of operators.In: Interpolation spaces and related topics (M. Cwikel, M. Milman and R. Rochberg, eds.). Israel Math. Conf. Proc. 5 (1992), 21–33. Zbl 0856.46046, MR 94b:46102. Zbl 0856.46046, MR 1206488
Reference: [CCMS] Carro M. J., Cerdà J., Milman M., Soria J.: Schechter methods of interpolation and commutators.Math. Nachr. 174 (1995), 35–53. Zbl 0832.46064, MR 96k:46137. Zbl 0832.46064, MR 1349035
Reference: [CCS1] Carro M. J., Cerdà J., Soria J.: Commutators and interpolation methods.Ark. Mat. 33 (1995), 199–216. Zbl 0903.46069, MR 97e:46101. Zbl 0903.46069, MR 1373022
Reference: [CCS2] Carro M. J., Cerdà J., Soria J.: Higher order commutators in interpolation theory.Math. Scand. 77 (1996), 301–319. Zbl 0852.46058, MR 97d:46094. MR 1379273
Reference: [CCS3] Carro M. J., Cerdà J., Soria J.: Commutators, interpolation and vector function spaces.In: Function spaces, interpolation spaces, and related topics. Proc. of the workshop, Haifa, Israel, June 7-13, 1995. Israel Math. Conf. Proc. 13, 24–31. Bar-Ilan Univ., Ramat Gan, 1999. Zbl 1007.46024, MR 2000e:46090. MR 1707356
Reference: [CM] Cerdà J., Martín J.: Commutators and Besov spaces.Preprint.
Reference: [CKM] Cerdà J., Krugljak N. Ya., Martín J.: Commutators for approximation spaces and Marcinkiewicz-type multipliers.J. Approx. Theory 100 (1999), 251–265. Zbl 0953.41023, MR 2000h:46086. Zbl 0953.41023, MR 1714965
Reference: [CLMS] Coifman R., Lions P.-L., Meyer Y., Semmes S.: Compacité par compensation et éspaces de Hardy.C. R. Acad. Sci. Paris, Sér. I 309 (1989), 945–949. Zbl 0684.46044, MR 91h:46058. MR 1054740
Reference: [CRW] Coifman R., Rochberg R., Weiss G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. 103 (1976), 611–635. Zbl 0326.32011, MR 54 #843. Zbl 0326.32011, MR 0412721
Reference: [Cw] Cwikel M.: Monotonicity properties of interpolation spaces.Ark. Mat. 14 (1976), 213–236. Zbl 0339.46024, MR 56 #1095. Zbl 0339.46024, MR 0442714
Reference: [CJM] Cwikel M., Jawerth B., Milman M.: The domain spaces of quasilogarithmic operators.Trans. Amer. Math. Soc. 317 (1989), 599–609. MR 90e:46075. MR 0974512
Reference: [CJMR] Cwikel M., Jawerth B., Milman M., Rochberg R.: Differential estimates and commutators in interpolation theory.In: Analysis at Urbana. Vol. II: Analysis in abstract spaces. Proc. Special year in modern analysis. London Math. Soc. Lecture Note Ser. 138, 170–220. Cambridge Univ. Press, Cambridge, 1989. Zbl 0696.46050, MR 90k:46157. Zbl 0696.46050, MR 1009191
Reference: [CKMR] Cwikel M., Kalton N., Milman M., Rochberg R.: A unified theory of commutator estimates for a class of interpolation methods.Adv. Math. 169 (2002), 241–312. Zbl pre01836808, MR 1 926 224. Zbl 1022.46017, MR 1926224
Reference: [CL] Carli L. De, Laeng E.: Sharp $L^p$ estimates for the segment multiplier.Collect. Math. 51 (2000), 309–326. Zbl 0982.42006, MR 2001m:42027. MR 1814332
Reference: [DL] DeVore R. A., Lorentz G. G.: Constructive approximation.Grundlehren der Mathematischen Wissenschaften 303. Springer-Verlag, Berlin, 1993. Zbl 0797.41016, MR 95f:41001. Zbl 0797.41016, MR 1261635
Reference: [DRS] DeVore R. A., Riemenschneider S. D., Sharpley R.: Weak interpolation in Banach spaces.J. Functional Anal. 33 (1979), 58–94. Zbl 0433.46062, MR 81f:46040. Zbl 0433.46062, MR 0545385
Reference: [EG] Edwards R. E., Gaudry G. I.: Littlewood-Paley multipliers theory.Springer-Verlag, Berlin, 1977. Zbl 0464.42013, MR 58 #29760. MR 0618663
Reference: [GR] Cuerva J. García,- Francia J. L. Rubio de: Weighted norm inequalities and related topics.North-Holland Mathematics Studies 116. North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. MR 0807149
Reference: [G] Gustavsson J.: A function parameter in connection with interpolation of Banach spaces.Math. Scand. 42 (1978), 289–305. Zbl 0389.46024, MR 80d:46124. Zbl 0389.46024, MR 0512275
Reference: [JRW] Jawerth B., Rochberg R., Weiss G.: Commutators and other second order estimates in real interpolation theory.Ark. Mat. 24 (1986), 191–219. Zbl 0655.41005, MR 88i:46096. MR 0884187
Reference: [Ka1] Kalton N. J.: Nonlinear commutators in interpolation theory.Mem. Amer. Math. Soc. 385 (1988). Zbl 0658.46059, MR 89h:47104. Zbl 0658.46059, MR 0938889
Reference: [Ka2] Kalton N. J.: Differentials of complex interpolation processes for Köthe function spaces.Trans. Amer. Math. Soc. 333 (1992), 479–529. Zbl 0776.46033,MR 92m:46111. Zbl 0776.46033, MR 1081938
Reference: [KPS] Krein A., Petunin, Yu., Semenov E. M.: Interpolation of linear operators.(Russian) Nauka, Moscow, 1978. Zbl 0493.46058, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54. Amer. Math. Soc., Providence, R.I., 1982. Zbl 0499.46044, MR 84j:46103. MR 0649411
Reference: [Li] Lions J.-L.: Quelques procédés d’interpolation d’opérateurs linéaires et quelques applications.Seminaire Schwartz II (1960–61), 2–3.
Reference: [MS] Milman M., Schonbek T.: Second order estimates in interpolation theory and applications.Proc. Amer. Math. Soc. 110 (1990), 961–969. Zbl 0717.46066, MR 91k:46088. Zbl 0717.46066, MR 1075187
Reference: [Ni] Nilsson P.: Reiteration theorems for real interpolation and approximation spaces.Ann. Math. Pura Appl. 132 (1982), 291–330. Zbl 0514.46049, MR 86c:46089. Zbl 0514.46049, MR 0696048
Reference: [Pe] Peetre J.: New thoughts on Besov spaces.Duke University Mathematics Series. Durham, N.C., 1976. Zbl 0356.46038, MR 57 #1108. Zbl 0356.46038, MR 0461123
Reference: [PS] Peetre J., Sparr G.: Interpolation of normed Abelian groups.Ann. Mat. Pura Appl., IV. Ser. 92 (1972), 217–262. Zbl 0237.46039, MR 48 #891. Zbl 0237.46039, MR 0322529
Reference: [RW] Rochberg R., Weiss G.: Derivatives of analytic families of Banach spaces.Ann. of Math. 118 (1983), 315–347. Zbl 0539.46049, MR 86a:46099. Zbl 0539.46049, MR 0717826
Reference: [Ru] Francia J. L. Rubio de: A Littlewood-Paley inequality for arbitrary intervals.Rev. Mat. Iberoamericana 2 (1985), 1–14. Zbl 0611.42005, MR 87j:42057. MR 0850681
Reference: [Sc] Schechter M.: Complex interpolation.Comp. Math. 18 (1967), 117–147. Zbl 0153.16402, MR 36 #6927. Zbl 0153.16402, MR 0223880
Reference: [ST1] Segovia C., Torrea J. L.: Vector valued commutators and applications.Indiana Univ. Math. J. 38 (1989), 959–971. Zbl 0696.47033, MR 90k:47067. Zbl 0696.47033, MR 1029684
Reference: [ST2] Segovia C., Torrea J. L.: Commutators of Littlewood-Paley sums.Ark. Mat. 31 (1993), 117–136. Zbl 0803.42006, MR 94j:42034. Zbl 0803.42006, MR 1230269
Reference: [St1] Stein E. M.: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 44 #7280. Zbl 0207.13501, MR 0290095
Reference: [St2] Stein E. M.: Harmonic analysis.Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. Zbl 0821.42001, MR 1232192
Reference: [Tr] Triebel H.: Interpolation theory, function spaces, differential operators.North-Holland Math. Library 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. Zbl 0387.46033, MR 0503903
Reference: [W] Williams V.: Generalized interpolation spaces.Trans. Amer. Math. Soc. 156 (1971), 309–334. Zbl 0213.13002, MR 43 #906. Zbl 0213.13002, MR 0275149
.

Files

Files Size Format View
NAFSA_102-2002-1_4.pdf 637.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo