Previous |  Up |  Next

Article

Title: $BV$ spaces and rectifiability for Carnot-Carathéodory metrics: an introduction (English)
Author: Franchi, Bruno
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 7
Issue: 2002
Year:
Pages: 73-132
.
Category: math
.
Summary: This paper is meant as a (short and partial) introduction to the study of the geometry of Carnot groups and, more generally, of Carnot-Carathéodory spaces associated with a family of Lipschitz continuous vector fields. My personal interest in this field goes back to a series of joint papers with E. Lanconelli, where this notion was exploited for the study of pointwise regularity of weak solutions to degenerate elliptic partial differential equations. As stated in the title, here we are mainly concerned with topics of Geometric Measure Theory in Carnot groups and in particular with rectifiability theory in this setting. Thus, the core of the paper consists of Section 3 (dedicated to the study of BV functions with respect to Carnot-Carathéodory metrics), of Section 4 (dedicated more specifically to the theory of Carnot groups and, in particular, to the calculus associated with their differential structure as differential bundles) and of Section 5 (dedicated to the theory of intrinsic hypersurfaces and to rectifiability theory in Carnot groups). These sections rely basically on a group of results obtained in several papers in collaboration with R. Serapioni and F. Serra Cassano, starting from 1996. On the other hand, Section 2 and 6 are dedicated to the notion of Carnot-Carathéodory metric, to the properties of related Sobolev spaces and to Poincaré inequality associated with a family of Lipschitz continuous vector fields. In particular, relying on a group of joint papers with R. L. Wheeden, S. Gallot, C. Gutiérrez, P. Hajłasz, P. Koskela, G. Lu and C. Pérez, deep relationships between Poincaré inequality and the geometry of Carnot-Carathéodory spaces are studied. (English)
Keyword: Carnot-Carathéodory metrics
Keyword: Carnot groups
Keyword: Poincaré inequality
Keyword: hypersurfaces
Keyword: rectifiability
Keyword: Sobolev spaces
Keyword: BV spaces
MSC: 22E25
MSC: 28A75
MSC: 28A78
MSC: 42B25
MSC: 46E35
.
Date available: 2009-10-08T09:49:49Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702484
.
Reference: [1] Ambrosio L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces.Adv. Math. 159 (2001), 51–67. Zbl 1002.28004, MR 2002b: 31002. Zbl 1002.28004, MR 1823840
Reference: [2] Ambrosio L.: Fine properties of sets of finite perimeter in doubling metric measure spaces.In: Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), 111–128. Zbl 1037.28002, MR 1926376
Reference: [3] Ambrosio L., Kirchheim B.: Rectifiable sets in metric and Banach spaces.Math. Ann. 318 (2000), 527–555. Zbl 0966.28002, MR 2003a:28009. Zbl 0966.28002, MR 1800768
Reference: [4] Ambrosio L., Kirchheim B.: Currents in metric spaces.Acta Math. 185 (2000), 1–80. Zbl 0984.49025, MR 2001k:49095. Zbl 0984.49025, MR 1794185
Reference: [5] Ambrosio L., Magnani V.: Some fine properties of $BV$ functions on sub-Riemannian groups.Preprint. Scuola Normale Superiore, 2002.
Reference: [6] Anzellotti G., Giaquinta M.: $BV$ functions and traces.Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. Zbl 0432.46031, MR 82e:46046. MR 0555952
Reference: [7] Auscher P., Qafsaoui M.: Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form.J. Funct. Anal. 177 (2000), 310–364. Zbl 0979.35044, MR 2001j:35057. Zbl 0979.35044, MR 1795955
Reference: [8] Bakry D., Coulhon T., Ledoux M., Coste L. Saloff,- : Sobolev inequalities in disguise.Indiana Univ. Math. J. 44 (1995), 1033–1074. Zbl 0857.26006, MR 97c:46039. MR 1386760
Reference: [9] Balogh Z.: Size of characteristic sets and functions with prescribed gradient.Preprint, 2000. Zbl 1051.53024, MR 2021034
Reference: [10] Balogh Z., Rickly M., Cassano F. Serra: Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric.Preprint, 2001. MR 1970902
Reference: [11] Bellaïche A.: The tangent space in subriemannian geometry.In: Subriemannian Geometry (A. Bellaïche and J. Risler, eds.). Progress in Mathematics 144. Birkhäuser, Basel, 1996, pp. 1–78. Zbl 0862.53031, MR 98a:53108.
Reference: [12] Biroli M., Mosco U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 6 (1995), 37–44. Zbl 0837.31006, MR 96i:46034a. Zbl 0837.31006, MR 1340280
Reference: [13] Bonfiglioli A.: Carnot groups related to sets of vector fields.Boll. Un. Mat. Ital. (to appear). Zbl 1178.35140
Reference: [14] Bonfiglioli A., Uguzzoni F.: A note on lifting of Carnot groups.Preprint, 2002. Zbl 1100.35029
Reference: [15] Buckley S., Koskela P., Lu G.: Boman equals John.In: 16th Rolf Nevanlinna Colloquium. Proceedings of the international conference held in Joensuu, Finland, August 1–5, 1995. (I. Laine et al., eds.). De Gruyter, Berlin, 1996, pp. 91–99. Zbl 0861.43007, MR 98m:43013. MR 1427074
Reference: [16] Busemann H.: The geometry of geodesics.Academic Press, New York, N. Y., 1955. Zbl 0112.37002, MR 17,779a. Zbl 0112.37002, MR 0075623
Reference: [17] Buttazzo G.: Semicontinuity, relaxation and integral rapresentation in the calculus of variations.Pitman Research Notes in Mathematics Series 207. Longman Scientific & Technical, Longman, Harlow, 1989. Zbl 0669.49005, MR 91c:49002. MR 1020296
Reference: [18] Cancelier C., Franchi B., Serra E.: Agmon metric for sum-of-squares operators.J. Anal. Math. 83 (2001), 89–107. Zbl pre01640251, MR 2002e:35059. Zbl 1200.35061, MR 1828487
Reference: [19] Capogna L., Danielli D., Garofalo N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality.Comm. Anal. Geom. 2 (1994), 203–215. Zbl 0864.46018, MR 96d:46032. Zbl 0864.46018, MR 1312686
Reference: [20] Capogna L., Danielli D., Garofalo N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type.Math. Z. 226 (1997), 147–154. Zbl 0893.35023, MR 98i:35025. Zbl 0893.35023, MR 1472145
Reference: [21] Cohn W., Lu G., Lu S.: Higher order Poincaré inequalities associated with linear operators on stratified groups and applications.Math. Z. (to appear). Zbl 1023.46032, MR 1992541
Reference: [22] Coifman R. R., Weiss G.: Analyse harmonique non-commutative sur certains espaces homogenes. Etude de certaines intégrales singuliéres.Lecture Notes in Math. 242. Springer-Verlag, Berlin–Heidelberg–New York , 1971. Zbl 0224.43006, MR 58 #17690. Zbl 0224.43006, MR 0499948
Reference: [23] Coulhon T.: Inégalités de Gagliardo-Nirenberg pour les semi-groupes d’opérateurs et applications.Potential Anal. 1 (1992), 343–353. Zbl 0768.47018, MR 94k:47064. Zbl 0768.47018, MR 1245890
Reference: [24] Coulhon T., Russ E., Nachef V. Tardivel,- : Sobolev algebras on Lie groups and Riemannian manifolds.Amer. J. Math. 123 (2001), 283–342. Zbl 0990.43003, MR 2002g:43003. MR 1828225
Reference: [25] Coulhon T., Coste L. Saloff,- : Semi-groupes d’opérateurs et espaces fonctionnels sur les groupes de Lie.J. Approximation Theory 65 (1991), 176–199. Zbl 0745.47030, MR 92c:47049. MR 1104158
Reference: [26] Coulhon T., Coste L. Saloff,- : Isopérimétrie pour les groupes et les variétés.Revista Mat. Iberoamericana 9 (1993), 293–314. Zbl 0782.53066, MR 94g:58263. MR 1232845
Reference: [27] Maso G. Dal: An introduction to $\Gamma $-convergence.Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser, Basel, 1993. Zbl 0816.49001, MR 94a:49001. MR 1201152
Reference: [28] Danielli D., Garofalo N., Nhieu D. M.: Traces inequalities for Carnot-Carathéodory spaces and applications.Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser. 27 (1998), 195–252. Zbl 0938.46036, MR 2000d:46039. MR 1664688
Reference: [29] David G., Semmes S.: Fractured fractals and broken dreams. Self-similargeometry through metric and measure.Oxford Lecture Series in Mathematics andits Applications 7. Clarendon Press, Oxford University Press, Oxford, 1997.Zbl 0887.54001, MR 99h:28018. MR 1616732
Reference: [30] Giorgi E. De: Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni.Ann. Mat. Pura Appl., IV. Ser. 36 (1954), 191–213.Zbl 0055.28504, MR 15,945d. Zbl 0055.28504, MR 0062214
Reference: [31] Giorgi E. De: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni.Ricerche Mat. 4 (1955), 95–113. Zbl 0066.29903, MR 17,596a. Zbl 0066.29903, MR 0074499
Reference: [32] Delladio S.: Lower semicontinuity and continuity of function measures with respect to the strict convergence.Proc. Royal Soc. Edinburgh 119A (1991), 265–278. Zbl 0747.28007, MR 92i:28012. MR 1135973
Reference: [33] Derridj M.: Sur un théorème de trace.Ann. Inst. Fourier (Grenoble) 22 (1972), 72–83. Zbl 0226.46041, MR 49 #7755. MR 0343011
Reference: [34] Derridj M., Dias J.-P.: Le problème de Dirichlet pour une classe d’opérateurs non linéaires.J. Math. Pures Appl., IX. Sér. 51 (1972), 219–230. Zbl 0229.35038, MR 54 #8015. Zbl 0229.35038, MR 0419998
Reference: [35] Derridj M., Zuily C.: Régularité $C_\infty $ à la frontière d’opérateurs dégénérés.C. R. Acad. Sci. Paris, Sér. A 271 (1970), 786–788. Zbl 0206.44702, MR 43 #2347. MR 0276603
Reference: [36] Federer H.: Geometric measure theory.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer, Berlin, 1969. Zbl 0176.00801, MR 41 #1976. Zbl 0176.00801, MR 0257325
Reference: [37] Fefferman C., Phong D. H.: Subelliptic eigenvalue problems.In: Harmonic analysis. Conference in honor of A. Zygmund, Chicago 1981, Vol. I, II. Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590–606. Zbl 0503.35071, MR 86c:35112. MR 0730094
Reference: [38] Folland G. B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161–207. Zbl 0312.35026, MR 58 #13215. Zbl 0312.35026, MR 0494315
Reference: [39] Folland G. B., Stein E. M.: Hardy spaces on homogeneous groups.Mathematical Notes 28. Princeton University Press, Princeton, N.J., 1982. Zbl 0508.42025, MR 84h:43027. Zbl 0508.42025, MR 0657581
Reference: [40] Franchi B.: Stime subellittiche e metriche Riemanniane singolari II.Seminario di Analisi Matematica, Università di Bologna, 1983, VIII-1–VIII-17.
Reference: [41] Franchi B.: Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations.Trans. Amer. Math. Soc. 327 (1991),125–158. Zbl 0751.46023, MR 91m:35095. Zbl 0751.46023, MR 1040042
Reference: [42] Franchi B., Gallot S., Wheeden R. L.: Sobolev and isoperimetric inequalities for degenerate metrics.Math. Ann. 300 (1994), 557–571. Zbl 0830.46027, MR 96a:46066. MR 1314734
Reference: [43] Franchi B., Gutiérrez C. E., Wheeden R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators.Comm. Partial Differ. Equations 19 (1994), 523–604. Zbl 0822.46032, MR 96h:26019. MR 1265808
Reference: [44] Franchi B., Hajłasz P., Koskela P.: Definitions of Sobolev classes on metric spaces.Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. Zbl 0938.46037, MR 1738070
Reference: [45] Franchi B., Lanconelli E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients.Ann. Scuola Norm. Super. Pisa, Cl. Sci., IV. Ser. 10 (1983), 523–541. Zbl 0552.35032, MR 85k:35094. Zbl 0552.35032, MR 0753153
Reference: [46] Franchi B., Lu G., Wheeden R. L.: Representation formulas and weighted Poincaré inequalities for Hörmander vector fields.Ann. Inst. Fourier 45 (1995), 577–604. Zbl 0820.46026, MR 96i:46037. Zbl 0820.46026, MR 1343563
Reference: [47] Franchi B., Lu G., Wheeden R. L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type.Internat. Math. Res. Notices (1996), 1–14. Zbl 0856.43006, MR 97k:26012. Zbl 0856.43006, MR 1383947
Reference: [48] Franchi B., Pérez C., Wheeden R. L.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type.J. Funct. Anal. 153 (1998), 108–146. Zbl 0892.43005, MR 99d:42042. Zbl 0892.43005, MR 1609261
Reference: [49] Franchi B., Pérez C., Wheeden R. L.: A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces.J. Fourier Anal. Appl. (to appear). Zbl 1074.46022, MR 2027891
Reference: [50] Franchi B., Serapioni R., Cassano F. Serra: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields.Houston J. Math. 22 (1996), 859–890. Zbl 0876.49014, MR 98c:49037. MR 1437714
Reference: [51] Franchi B., Serapioni R., Cassano F. Serra: Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields.Boll. Unione Mat. Ital., VII. Ser. 11-B (1997), 83–117. Zbl 0952.49010, MR 98c:46062. MR 1448000
Reference: [52] Franchi B., Serapioni R., Cassano F. Serra: Sur les ensembles des périmètre fini dans le groupe de Heisenberg.C. R. Acad. Sci. Paris, Sér. I, Math. 329 (1999), 183–188. Zbl pre01340017, MR 2000e:49008. MR 1711057
Reference: [53] Franchi B., Serapioni R., Cassano F. Serra: Rectifiability and perimeter in the Heisenberg group.Math. Ann. 321 (2001), 479–531. Zbl pre01695175,MR 1 871 966. MR 1871966
Reference: [54] Franchi B., Serapioni R., Cassano F. Serra: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups.Comm. Anal. Geom. (to appear). MR 2032504
Reference: [55] Franchi B., Serapioni R., Cassano F. Serra: Rectifiability and perimeter in step 2 groups.Proceedings of Equadiff 10, Prague, August 2001. Math. Bohem. 127 (2002), 219–228. Zbl pre01842893. MR 1981527
Reference: [56] Franchi B., Serapioni R., Cassano F. Serra: On the structure of finite perimeter sets in step 2 Carnot groups.J. Geometric Anal. (to appear). MR 1984849
Reference: [57] Franchi B., Wheeden R. L.: Compensation couples and isoperimetric estimates for vector fields.Colloq. Math. 74 (1997), 9–27. Zbl 0915.46028, MR 98g:46042. Zbl 0915.46028, MR 1455453
Reference: [58] Franchi B., Wheeden R. L.: Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type.J. Inequal. Appl. 3 (1999), 65–89. Zbl 0934.46037, MR 2001b:53027. Zbl 0934.46037, MR 1731670
Reference: [59] Friedrichs K. O.: The identity of weak and strong extensions of differential operators.Trans. Amer. Math. Soc. 55 (1944), 132–151. Zbl 0061.26201, MR 5,188b. Zbl 0061.26201, MR 0009701
Reference: [60] Garofalo N., Nhieu D. M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces.Commun. Pure Appl. Math. 49 (1996), 1081–1144. Zbl 0880.35032, MR 97i:58032. MR 1404326
Reference: [61] Garofalo N., Nhieu D. M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot Carathéodory spaces.J. Anal. Math. 74 (1998), 67–97. Zbl 0906.46026, MR 2000i:46025. Zbl 0906.46026, MR 1631642
Reference: [62] Garofalo N., Pauls S. D.: The Bernstein problem in the Heisenberg group.(to appear). Zbl 1161.53024
Reference: [63] Gromov M.: Carnot-Carathéodory spaces seen from within.In: Sub-Riemannian Geometry. Proceedings of the satellite meeting of the 1st European congress of mathematics “Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique”, Paris, June 30–July 1, 1992 (A. Bellaïche and J. Risler, eds.). Progress in Mathematics 144. Birkhäuser, Basel, 1996, pp. 79–323. Zbl 0864.53025, MR 2000f:53034. MR 1421823
Reference: [64] Gromov M.: Metric structures for Riemannian and non-Riemannian spaces.Progress in Mathematics 152. Birkhäuser, Boston, MA, 1999. Zbl 0953.53002,MR 2000d:53065. Zbl 0953.53002, MR 1699320
Reference: [65] Hajłasz P.: Sobolev spaces on an arbitrary metric space.Potential Anal. 5 (1996), 403–415. Zbl 0859.46022, MR 97f:46050. MR 1401074
Reference: [66] Hajłasz P.: Geometric approach to Sobolev spaces and badly degenerated elliptic equations.In: Proceedings of the Banach Center minisemester on nonlinear analysis and applications, Warsaw, Poland, November 14–December 15, 1994. (N. Kenmochi et al., eds.). Int. Ser., Math. Sci. Appl. 7. Gakkotosho Co., Ltd. GAKUTO, Tokyo, 1995, pp. 141–168. Zbl 0877.46024, MR 97m:46051. MR 1422932
Reference: [67] Hajłasz P., Koskela P.: Sobolev met Poincaré.Memoirs Amer. Math. Soc. 688 (2000). Zbl 0954.46022, MR 2000j:46063.
Reference: [68] Heinonen J.: Calculus on Carnot groups.In: Fall School in Analysis, Jyväskylä, Finland, October 3–7, 1994 (T. Kilpeläinen, ed.). Univ. Jyväskylä Math. Inst. Report 68. Univ. of Jyväskylä, 1995, pp. 1–31. Zbl 0863.22009, MR 96j:22015. MR 1351042
Reference: [69] Heinonen J.: Lectures on analysis on metric spaces.Universitext. Springer-Verlag, New York, 2001. Zbl 0985.46008. Zbl 0985.46008, MR 1800917
Reference: [70] Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander condition.Duke Math. J. 53 (1986), 503–523. Zbl 0614.35066, MR 87i:35027. MR 0850547
Reference: [71] Kirchheim B., Cassano F. Serra: Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group.Preprint, 2002. MR 2124590
Reference: [72] Korányi A., Reimann H. M.: Foundation for the theory of quasiconformal mappings on the Heisenberg group.Adv. Math. 111 (1995), 1–87. Zbl 0876.30019, MR 96c:30021. MR 1317384
Reference: [73] Lanconelli E., Morbidelli D.: On the Poincaré inequality for vector fields.Ark. Mat. 38 (2000), 327–342. MR 2002a:46037. Zbl 1131.46304, MR 1785405
Reference: [74] Leonardi G., Rigot S.: Isoperimetric sets in the Heisenberg groups.Preprint, 2001.
Reference: [75] Long R., Nie F.: Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators.In: Harmonic analysis. Proceedings of the special program at the Nankai Institute of Mathematics, Tianjin, PR China, March–July, 1988(M.-T. Cheng et al., eds.). Lect. Notes in Math. 1494. Springer, Berlin, 1991, pp. 131–141. Zbl 0786.46034, MR 94c:46066. MR 1187073
Reference: [76] Lu G.: The sharp Poincaré inequality for free vector fields: an endpoint result.Rev. Mat. Iberoamericana 10 (1994), 453–466. Zbl 0860.35006, MR 96g:26023. Zbl 0860.35006, MR 1286482
Reference: [77] Lu G.: Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups.Acta Math. Sin. (Engl. Ser.) 16 (2000), 405–444. Zbl 0973.46020, MR 2001k:46054. Zbl 0973.46020, MR 1787096
Reference: [78] Lu G., Liu Y., Wheeden R. L.: Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces.Math. Ann. 323 (2002), 157–174. Zbl pre01801594, MR 1 906 913. Zbl 1007.46034, MR 1906913
Reference: [79] Lu G., Liu Y., Wheeden R. L.: High order representation formulas and embedding theorems on stratified groups and generalizations.Studia Math. 142 (2000), 101–133. MR 2001k:46055. MR 1792599
Reference: [80] Lu G., Wheeden R. L.: An optimal representation formula for Carnot-Carathéodory vector fields.Bull. London Math. Soc. 30 (1998), 578–584. Zbl 0931.31003, MR 2000a:31005. Zbl 0931.31003, MR 1642822
Reference: [81] Lu G., Wheeden R. L.: Simultaneous representation and approximation formulas and higher order Sobolev embedding theorems on stratified groups.Preprint, 2002. MR 2078090
Reference: [82] Luckhaus S., Modica L.: The Gibbs-Thompson relation within the gradient theory of phase transition.Arch. Rat. Mech. Anal. 107 (1989), 71–83. Zbl 0681.49012, MR 90k:49041. MR 1000224
Reference: [83] Magnani V.: On a general coarea inequality and applications.Ann. Acad. Sci. Fenn. Math. 27 (2002), 121–140. MR 2002k:49080. Zbl 1064.49034, MR 1884354
Reference: [84] Magnani V.: A blow-up theorem for regular hypersurfaces in nilpotent groups.Manuscripta Math. (to appear). MR 1951800
Reference: [85] Magnani V.: An area formula in metric spaces.Preprint, 2002. Zbl 1231.28007, MR 2842953
Reference: [86] Magnani V.: Perimeter measure and higher codimension rectifiability in homogeneous groups.Preprint, 2001.
Reference: [87] Magnani V.: Elements of geometric measure theory on sub-Riemannian groups.PhD Thesis, Scuola Normale Superiore, Pisa, 2002 (to appear in the series Tesi of SNS Pisa). Zbl 1064.28007, MR 2115223
Reference: [88] Maheux P., Coste L. Saloff,- : Analyse sur les boules d’un opérateur sous-elliptique.Math. Ann. 303 (1995), 713–740. Zbl 0836.35106, MR 96m:35049. MR 1359957
Reference: [89] Martio O., Sarvas J.: Injectivity theorems in plane and space.Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1979), 383–401. Zbl 0406.30013, MR 81i:30039. Zbl 0406.30013, MR 0565886
Reference: [90] Mattila P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability.Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge, 1995. Zbl 0819.28004, MR 96h:28006. Zbl 0819.28004, MR 1333890
Reference: [91] Jr M. Miranda ,. : Functions of bounded variation on “good” metric spaces.J. Math. Pures Appl. (to appear). Zbl 1109.46030, MR 2005202
Reference: [92] Mitchell J.: On Carnot-Carathèodory metrics.J. Differ. Geom. 21 (1985), 35–45. Zbl 0554.53023, MR 87d:53086. Zbl 0554.53023, MR 0806700
Reference: [93] Montanari A., Morbidelli D.: Balls defined by nonsmooth vector fields and the Poincaré inequality.Preprint, 2003. Zbl 1069.46504, MR 2073841
Reference: [94] Montefalcone F.: Sets of finite perimeter associated with vector fields and polyhedral approximation.Preprint, 2001. Zbl 1072.49031, MR 2104216
Reference: [95] Montgomery R.: A tour of subriemannian geometries, their geodesics and applications.Mathematical Surveys and Monographs 91. American Mathematical Society, Providence, R.I., 2002. Zbl pre01731778, MR 2002m:53045. Zbl 1044.53022, MR 1867362
Reference: [96] Monti R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces.PhD Thesis, University of Trento, 2001.
Reference: [97] Monti R., Morbidelli D.: Regular domains in homogeneous groups.Preprint, 2001. Zbl 1067.43003, MR 2135732
Reference: [98] Monti R., Morbidelli D.: Domains with the cone property in Carnot-Carathéodory spaces.Preprint, 2002.
Reference: [99] Monti R., Cassano F. Serra: Surface measures in Carnot-Carathéodory spaces.Calc. Var. Partial Differ. Equations 13 (2001), 339–376. Zbl pre01703143, MR 2002j:49052. MR 1865002
Reference: [100] Morbidelli D.: Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields.Studia Math. 139 (2000), 213–244. Zbl 0981.46034, MR 2002a:46039. Zbl 0981.46034, MR 1762582
Reference: [101] Nagel A., Stein E. M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties.Acta Math. 155 (1985), 103–147. Zbl 0578.32044, MR 86k:46049. Zbl 0578.32044, MR 0793239
Reference: [102] Pansu P.: Une inégalité isopérimétrique sur le groupe de Heisenberg.C. R. Acad. Sci. Paris, Sér. I 295 (1982), 127–130. Zbl 0502.53039, MR 85b:53044. Zbl 0502.53039, MR 0676380
Reference: [103] Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. Math. 129 (1989), 1–60. Zbl 0678.53042, MR 90e:53058. Zbl 0678.53042, MR 0979599
Reference: [104] Pansu P.: Geometrie du group d’Heisenberg.These pour le titre de Docteur 3ème cycle, Université Paris VII, Paris, 1982.
Reference: [105] Pauls S. D.: The large scale geometry of nilpotent Lie groups.Commun. Anal. Geom. 9 (2001), 951–982. Zbl pre01751515. MR 1883722
Reference: [106] Pauls S. D.: A notion of rectifiability modelled on Carnot groups.(to appear). MR 2048183
Reference: [107] Reschetnyak, Yu. G.: Weak convergence of completely additive vector functions on a set.Sibirsk. Mat. Z. 9 (1968), 1386–1394. Zbl 0176.44402. MR 0240274
Reference: [108] Rothschild L., Stein E. M.: Hypoelliptic differential operators and nilpotent groups.Acta Math. 137 (1976), 247–320. Zbl 0346.35030, MR 55 #9171. MR 0436223
Reference: [109] Coste L. Saloff,- : A note on Poincaré, Sobolev and Harnack inequalities.Internat. Math. Res. Notices (1992), 27–38. Zbl 0769.58054, MR 93d:58158. MR 1150597
Reference: [110] Coste L. Saloff,- : Aspects of Sobolev-type inequalities.London Mathematical Society Lecture Note Series 289. University Press, Cambridge, 2002. Zbl 0991.35002, MR 2003c:46048. MR 1872526
Reference: [111] Sawyer E., Wheeden R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–874.Zbl 0783.42011, MR 94i:42024. Zbl 0783.42011, MR 1175693
Reference: [112] Semmes S.: On the non existence of bilipschitz parametrization and geometric problems about $A_\infty $ weights.Revista Mat. Iberoamericana 12 (1996), 337–410. Zbl 0858.46017, MR 97e:30040. MR 1402671
Reference: [113] Serrin J.: On the definition and properties of certain variational integrals.Trans. Amer. Math. Soc. 101 (1961), 139–167. Zbl 0102.04601, MR 25 #1466. Zbl 0102.04601, MR 0138018
Reference: [114] Stein E. M.: Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals.Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. Zbl 0821.42001, MR 1232192
Reference: [115] Varopoulos N. Th.: Analysis on Lie groups.J. Funct. Anal. 76 (1988), 346–410. Zbl 0634.22008, MR 89i:22018. Zbl 0634.22008, MR 0924464
Reference: [116] Varopoulos N. Th., Coste L. Saloff,- Coulhon T.: Analysis and geometry on groups.Cambridge Tracts in Mathematics 100. Cambridge University Press, Cambridge, 1992. Zbl 0813.22003, MR 95f:43008. MR 1218884
Reference: [117] Vodop’yanov S. K. : $\Cal P$-differentiability on Carnot groups in different topologies and related topics.In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 603–670. Zbl 0992.58005. MR 1847541
.

Files

Files Size Format View
NAFSA_102-2002-1_5.pdf 716.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo