Editor: Balcar, Bohuslav
Organized by: Charles University, Center for Theoretical Study and Faculty of Mathematics and Physics; Mathematical Institute of Academy of Sciences of Czech Republic
Venue: Poděbrady, 1993
Publisher: Charles University, Praha, 1993
Series: Acta Universitatis Carolinae - Mathematica et Physica, Vol. 34, No. 2
MR1282959
Proceedings published in:
Acta Universitatis Carolinae. Mathematica et Physica, Vol. 034, Issue 2
| 3 | Foreword. Balcar, Bohuslav |
| 5-6 | Eduard Čech 1893 - 1960. Balcar, Bohuslav; Koutník, Václav; Simon, Petr |
| 7-9 | A note on strong measure zero sets. Andryszczak, A.; Recław, I. |
| 11-29 | Remarks on integration by parts in infinite dimension. Bogachev, V. I. |
| 31-39 | Čech-Stone remainders of spaces that look like $[0,\infty]$. Dow, A.; Hart, Klaas Pieter |
| 41-46 | On the limits of sequences of Darboux a.e. quasi-continuous functions. Grande, Z. |
| 47-49 | On extensions of $\sigma$-fields of sets. Grzegorek, E. |
| 51-57 | Local and global $\sigma$-cone porosity. Holický, P. |
| 59-65 | Cyclic approximation of ergodic step cocycles over irrational rotations. Iwanik, A. |
| 67-70 | On subdifferentials of convex functions. Kolomý, J. |
| 71-74 | A note on Carathéodory type function. Kucia, A.; Nowak, A. |
| 75-82 | The indexed open covering theorem. Kulpa, W. |
| 83-95 | One dimensional dynamics and factors of finite automata. Kúrka, P. |
| 97-105 | One counterexample concerning the Fréchet differentiability of convex functions on closed sets. Matoušková, E. |
| 107-111 | On sums of Darboux functions. Natkaniec, T. |
| 113-116 | Concerning a certain $\sigma$-algebra in compact Hausdorff spaces. Stegall, C. |
| 117-134 | Formal languages in dynamical systems. Troll, G. |
| 135-142 | Frolik's theorem for basically disconnected spaces. Vermeer, J. |
| 143-153 | Stable smooth and extreme points, and reflexivity. Veselý, L. |
| 155-157 | A note to decompositions of real line. Vinárek, J. |
| 159-177 | Asplund spaces for beginners. Yost, D. |
| 179-185 | A note on singular points of convex functions in Banach spaces. Zajíček, L. |