Previous |  Up |  Next

Article

Title: Boundedness in a fully parabolic chemotaxis system with signal-dependent sensitivity and logistic term (English)
Author: Mizukami, Masaaki
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 61-68
.
Category: math
.
Summary: This paper deals with the chemotaxis system with signal-dependent sensitivity and logistic term \begin{align*} &u_t=\Delta u - \nabla \cdot (u \chi(v)\nabla v) + \mu u(1-u), % \quad \\ &v_t=\Delta v + u - v \end{align*} in $\Omega\times (0,\infty)$, where $\Omega$ is a bounded domain in $\mathbb{R}^n$ ($n\ge 2$) with smooth boundary, $\mu > 0$ is a constant and $\chi$ is a function generalizing \begin{align*} \chi(s) = \frac{K}{(1+s)^2} \quad (K>0,\ s>0). \end{align*} In the case that $\mu=0$ global existence and boundedness were established under some conditions for global existence and boundedness in the above system.([14]); however, conditions for global existence and boundedness in the above system have not been studied. The purpose of this paper is to construct conditions for global existence and boundedness in the above system. (English)
Keyword: Chemotaxis; signal-dependent sensitivity; logistic term; global existence.
MSC: 35A01
MSC: 35K51
MSC: 92C17.
.
Date available: 2019-09-27T07:39:40Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703018
.
Reference: [1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues., Math. Models Methods Appl. Sci., 25, pp. 1663–1763, 2015. MR 3351175, 10.1142/S021820251550044X
Reference: [2] Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces., Discrete Contin. Dyn. Syst., 35, pp. 1891–1904, 2015. MR 3294230, 10.3934/dcds.2015.35.1891
Reference: [3] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity., J.Math. Anal. Appl., 424, pp. 675–684, 2015. MR 3286587, 10.1016/j.jmaa.2014.11.045
Reference: [4] Fujie, K.: Study of reaction-diffusion systems modeling chemotaxis., PhD thesis, Tokyo University of Science, 2016.
Reference: [5] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity., Nonlinearity, 29, pp. 2417–2450, 2016. MR 3538418, 10.1088/0951-7715/29/8/2417
Reference: [6] Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system., preprint. MR 3816648
Reference: [7] He, X., Zheng, S.: Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source., J. Math. Anal. Appl., 436, pp. 970–982, 2016. MR 3446989, 10.1016/j.jmaa.2015.12.058
Reference: [8] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions., Eur. J. Appl. Math., 12, pp. 159–177, 2001. MR 1931303, 10.1017/S0956792501004363
Reference: [9] Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity., Math. Methods Appl. Sci., 39, pp. 394–404, 2016. MR 3454184, 10.1002/mma.3489
Reference: [10] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data., NoDEA, Nonlinear Differ. Equ. Appl., 24, No. 4, Paper No. 49, 33 p., 2017. MR 3674184, 10.1007/s00030-017-0472-8
Reference: [11] Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity., Discrete Contin. Dyn. Syst. Ser. B, 22, pp. 2301–2319, 2017. MR 3664704
Reference: [12] Mizukami, M.: Improvement of conditions for asymptotic stability in a two-species chemotaxis competition model with signal-dependent sensitivity., submitted, arXiv:1706.04774[math.AP]. MR 3664704
Reference: [13] Mizukami, M., Yokota, T.: Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion., J. Differential Equations, 261, pp. 2650–2669, 2016. MR 3507983, 10.1016/j.jde.2016.05.008
Reference: [14] Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity., Math. Nachr., to appear. MR 3722501
Reference: [15] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis., Funkcial. Ekvac., 40, pp. 411–433, 1997. MR 1610709
Reference: [16] Negreanu, M., Tello, J. I.: On a two species chemotaxis model with slow chemical diffusion., SIAM J. Math. Anal., 46, pp. 3761–3781, 2014. MR 3277217, 10.1137/140971853
Reference: [17] Negreanu, M., Tello, J. I.: Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant., J. Differential Equations, 258, pp. 1592–1617, 2015. MR 3295594, 10.1016/j.jde.2014.11.009
Reference: [18] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model., J. Differential Equations, 248, pp. 2889–2905, 2010. MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [19] Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening., J. Differential Equations, 257, pp. 1056–1077, 2014. MR 3210023, 10.1016/j.jde.2014.04.023
Reference: [20] Zhang, Q., Li, X.: Global existence and asymptotic properties of the solution to a two-species chemotaxis system., J. Math. Anal. Appl., 418, pp. 47–63, 2014. MR 3198865, 10.1016/j.jmaa.2014.03.084
.

Files

Files Size Format View
Equadiff_14-2017-1_10.pdf 411.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo