Previous |  Up |  Next

Article

Title: Kolmogorov's epsilon-entropy of the attractor of the strongly damped wave equation in locally uniform spaces (English)
Author: Slavík, Jakub
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 69-78
.
Category: math
.
Summary: We establish an upper bound on the Kolmogorov’s entropy of the locally compact attractor for strongly damped wave equation posed in locally uniform spaces in subcritical case using the method of trajectories. (English)
Keyword: Strongly damped wave equation, unbounded domains, locally compact attractor, Kolmogorovs entropy.
MSC: 35B41
MSC: 35L05
MSC: 37L30
.
Date available: 2019-09-27T07:41:02Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703040
.
Reference: [1] Belleri, V., Pata, V.: Attractors for semilinear strongly damped wave equations on $\Bbb R^3$., Discrete Contin. Dynam. Systems, 7 (2001), pp. 719–735. MR 1849655, 10.3934/dcds.2001.7.719
Reference: [2] Carvalho, A. N., Cholewa, J. W.: Attractors for strongly damped wave equations with critical nonlinearities., Pacific J. Math., 207 (2002), pp. 287–310. MR 1972247, 10.2140/pjm.2002.207.287
Reference: [3] Cholewa, J. W., Dlotko, T.: Strongly damped wave equation in uniform spaces., Nonlinear Anal., 64 (2006), pp. 174–187. MR 2183836, 10.1016/j.na.2005.06.021
Reference: [4] Conti, M., Pata, V., Squassina, M.: Strongly damped wave equations on $\Bbb R^3$ with critical nonlinearities., Commun. Appl. Anal., 9 (2005), pp. 161–176. MR 2168756
Reference: [5] Plinio, F. Di, Pata, V., Zelik, S.: On the strongly damped wave equation with memory., Indiana Univ. Math. J., 57 (2008), pp. 757–780. MR 2414334, 10.1512/iumj.2008.57.3266
Reference: [6] Ghidaglia, J.-M., Marzocchi, A.: Longtime behaviour of strongly damped wave equations, global attractors and their dimension., SIAM J. Math. Anal., 22 (1991), pp. 879–895. MR 1112054, 10.1137/0522057
Reference: [7] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories., J. Differential Equations, 249 (2010), pp. 2287–2315. MR 2718659, 10.1016/j.jde.2010.06.001
Reference: [8] Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly damped wave equation., J. Differential Equations, 247 (2009), pp. 1120–1155. MR 2531174, 10.1016/j.jde.2009.04.010
Reference: [9] Li, H., Zhou, S.: Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation., Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 3579–3586. MR 2913994, 10.1016/j.cnsns.2012.01.025
Reference: [10] Michálek, M., Pražák, D., HASH(0x2ff9058), Slavík, J.: Semilinear damped wave equation in locally uniform spaces., Commun. Pure Appl. Anal., 16 (2017), pp. 1673–1695. MR 3661796, 10.3934/cpaa.2017080
Reference: [11] Pata, V., Squassina, M.: On the strongly damped wave equation., Comm. Math. Phys., 253 (2005), pp. 511–533. MR 2116726, 10.1007/s00220-004-1233-1
Reference: [12] Pražák, D.: On finite fractal dimension of the global attractor for the wave equation with nonlinear damping., J. Dynam. Differential Equations, 14 (2002), pp. 763–776. MR 1940102, 10.1023/A:1020756426088
Reference: [13] Roubíček, T.: Nonlinear partial differential equations with applications., Birkhäuser/Springer Basel AG, Basel, International Series of Numerical Mathematics 153 (2013). MR 3014456
Reference: [14] Savostianov, A.: Infinite energy solutions for critical wave equation with fractional damping in unbounded domains., Nonlinear Anal., 136 (2016), pp. 136–167. MR 3474408, 10.1016/j.na.2016.02.016
Reference: [15] Yang, M., Sun, C.: Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity., Trans. Amer. Math. Soc., 361 (2009), pp. 1069–1101. MR 2452835, 10.1090/S0002-9947-08-04680-1
Reference: [16] Yang, M., Sun, C.: Exponential attractors for the strongly damped wave equations., Nonlinear Anal. Real World Appl., 11 (2010), pp. 913–919. MR 2571264, 10.1016/j.nonrwa.2009.01.022
Reference: [17] Zelik, S. V.: The attractor for a nonlinear hyperbolic equation in the unbounded domain., Discrete Contin. Dynam. Systems, 7 (2001), pp. 593–641. MR 1815770, 10.3934/dcds.2001.7.593
.

Files

Files Size Format View
Equadiff_14-2017-1_11.pdf 444.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo