Title:
|
Dynamical model of viscoplasticity (English) |
Author:
|
Kisiel, Konrad |
Language:
|
English |
Journal:
|
Proceedings of Equadiff 14 |
Volume:
|
Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017 |
Issue:
|
2017 |
Year:
|
|
Pages:
|
29-36 |
. |
Category:
|
math |
. |
Summary:
|
This paper discusses the existence theory to dynamical model of viscoplasticity and show possibility to obtain existence of solution without assuming weak safe-load condition. (English) |
Keyword:
|
Viscoplasticity, coercive approximation, Yosida approximation, safe-load condition, mixed boundary condition |
MSC:
|
35A01 |
MSC:
|
35Q74 |
MSC:
|
74C10 |
. |
Date available:
|
2019-09-27T07:33:41Z |
Last updated:
|
2019-09-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/703025 |
. |
Reference:
|
[1] Alber, H.-D.: Materials with memory., Lecture Notes in Mathematics, vol. 1682, Springer Verlag, Berlin, 1998. MR 1619546 |
Reference:
|
[2] Aubin, J.-P., Cellina, A.: Differential inclusions., volume 264 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer Verlag, Berlin, 1984. MR 0755330 |
Reference:
|
[3] Chelmiński, K.: Coercive approximation of viscoplasticity and plasticity., Asymptotic Anal., 26(2), pp. 105–133, 2001. MR 1832581 |
Reference:
|
[4] Kisiel, K.: Dynamical poroplasticity model – Existence theory for gradient type nonlinearities with Lipschitz perturbations., J. Math. Anal. Appl., 450(1), pp. 544–577, 2017. MR 3606182, 10.1016/j.jmaa.2017.01.045 |
Reference:
|
[5] Kisiel, K., Kosiba, K.: Dynamical poroplasticity model with mixed boundary conditions – theory for LM-type nonlinearity., J. Math. Anal. Appl., 443(1), pp. 187–229, 2016. MR 3508486, 10.1016/j.jmaa.2016.05.013 |
Reference:
|
[6] Owczarek, S.: Existence of solution to a non-monotone dynamic model in poroplasticity withmixed boundary conditions., Topol. Methods Nonlinear Anal., 43(2), pp. 297–322, 2014. MR 3236971, 10.12775/TMNA.2014.018 |
. |