Title:
|
Nonlinear diffusion equations with perturbation terms on unbounded domains (English) |
Author:
|
Kurima, Shunsuke |
Language:
|
English |
Journal:
|
Proceedings of Equadiff 14 |
Volume:
|
Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017 |
Issue:
|
2017 |
Year:
|
|
Pages:
|
37-44 |
. |
Category:
|
math |
. |
Summary:
|
This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term $$ u_t + (-\Delta+1)\beta(u) + G(u) = g \quad \mbox{in}\ \Omega\times(0, T) $$ in an unbounded domain $\Omega \subset \mathbb{R}^N$ with smooth bounded boundary, where $N \in \mathbb{N}$, $T>0$, $\beta$, is a single-valued maximal monotone function on $\mathbb{R}$, e.g., $$ \beta(r) = |r|^{q-1}r\ (q > 0, q\neq1) $$ and $G$ is a function on $\mathbb{R}$ which can be regarded as a Lipschitz continuous operator from $(H^1(\Omega))^{*}$ to $(H^1(\Omega))^{*}$. The present work establishes existence and estimates for the above problem. (English) |
Keyword:
|
Porous media equations, fast diffusion equations, subdifferential operators |
MSC:
|
35K35 |
MSC:
|
35K59 |
MSC:
|
47H05 |
. |
Date available:
|
2019-09-27T09:10:52Z |
Last updated:
|
2019-09-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/703024 |
. |
Reference:
|
[1] Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations., J. Differential Equations, 261 (2016), pp. 2935–2985. MR 3527619, 10.1016/j.jde.2016.05.016 |
Reference:
|
[2] Blanchard, D., Porretta, A.: Stefan problems with nonlinear diffusion and convection., J. Differential Equations, 210 (2005), pp. 383–428. MR 2119989, 10.1016/j.jde.2004.06.012 |
Reference:
|
[3] Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Especes de Hilbert., North-Holland, Amsterdam, 1973. MR 0348562 |
Reference:
|
[4] Damlamian, A.: Some results on the multi-phase Stefan problem., Comm. Partial Differential Equations, 2 (1977), pp. 1017–1044. MR 0487015, 10.1080/03605307708820053 |
Reference:
|
[5] DiBenedetto, E.: Continuity of weak solutions to a general porous medium equation., Indiana Univ. Math. J., 32 (1983), pp. 83–118. MR 0684758, 10.1512/iumj.1983.32.32008 |
Reference:
|
[6] Friedman, A.: The Stefan problem in several space variables., Trans. Amer. Math. Soc., 133 (1968), pp. 51–87. MR 0227625, 10.1090/S0002-9947-1968-0227625-7 |
Reference:
|
[7] Fukao, T., Kenmochi, N., Pawlow, I.: Transmission problems arising in Czochralski process of crystal growth., Mathematical aspects of modelling structure formation phenomena (Bȩdlewo/Warsaw, 2000), pp. 228–243, GAKUTO Internat. Ser. Math. Sci. Appl., 17, Gakkötosho, Tokyo, 2001. MR 1932116 |
Reference:
|
[8] Fukao, T.: Convergence of Cahn–Hilliard systems to the Stefan problem with dynamic boundary conditions., Asymptot. Anal., 99 (2016), pp. 1–21. MR 3541824, 10.3233/ASY-161373 |
Reference:
|
[9] Fukao, T., Kurima, S., Yokota, T.: Nonlinear diffusion equations as asymptotic limits of Cahn–Hilliard systems on unbounded domains via Cauchy’s criterion., preprint. MR 3790712 |
Reference:
|
[10] Haraux, A., Kenmochi, N.: Asymptotic behaviour of solutions to some degenerate parabolic equations., Funkcial. Ekvac., 34 (1991), pp. 19–38. MR 1116879 |
Reference:
|
[11] Kenig, C. E.: Degenerate Diffusions., Initial value problems and local regularity theory. EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. MR 2338118 |
Reference:
|
[12] Kurima, S., Yokota, T.: Monotonicity methods for nonlinear diffusion equations and their approximations with error estimates., J. Differential Equations, 263 (2017), pp. 2024–2050. MR 3650332, 10.1016/j.jde.2017.03.040 |
Reference:
|
[13] Marinoschi, G.: Well-posedness of singular diffusion equations in porous media with homogeneous Neumann boundary conditions., Nonlinear Anal., 72 (2010), pp. 3491–3514. MR 2587381, 10.1016/j.na.2009.12.033 |
Reference:
|
[14] Okazawa, N., Suzuki, T., Yokota, T.: Energy methods for abstract nonlinear Schrödinger equations., Evol. Equ. Control Theory, 1 (2012), pp. 337–354. MR 3085232, 10.3934/eect.2012.1.337 |
Reference:
|
[15] Rodriguez, A., Vázquez, J. L.: Obstructions to existence in fast-diffusion equations., J. Differential Equations, 184 (2002), pp. 348–385. MR 1929882, 10.1006/jdeq.2001.4144 |
Reference:
|
[16] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations., Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997. MR 1422252 |
Reference:
|
[17] Vázquez, J. L.: The Porous Medium Equation., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. MR 2286292 |
Reference:
|
[18] Yin, H.-M.: On a degenerate parabolic system., J. Differential Equations, 245 (2008), pp. 722–736. MR 2422525, 10.1016/j.jde.2008.03.017 |
. |