Previous |  Up |  Next

Article

Title: On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function (English)
Author: Senba, Takasi
Author: Fujie, Kentarou
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 45-52
.
Category: math
.
Summary: In this paper, we consider solutions to the following chemotaxis system with general sensitivity \[ \left\{ \begin{array}{l} \tau u_t = \Delta u - \nabla \cdot (u \nabla \chi (v)) \quad \mbox{ in } \Omega \times (0,\infty), \\ \eta v_t = \Delta v - v + u \quad \mbox{ in } \Omega \times (0,\infty), \\ \displaystyle \frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial \nu} = 0 \quad \mbox{ on } \partial \Omega \times (0,\infty). \end{array} \right. \] Here, $\tau$ and $\eta$ are positive constants, $\chi$ is a smooth function on $(0,\infty)$ satisfying $\chi^\prime (\cdot) >0$ and $\Omega$ is a bounded domain of $\mathbf{R}^n$ ($n \geq 2$). It is well known that the chemotaxis system with direct sensitivity ($\chi (v) = \chi_0 v$, $\chi_0>0$) has blowup solutions in the case where $n \geq 2$. On the other hand, in the case where $\chi (v) = \chi_0 \log v$ with $0 < \chi_0 \ll 1$, any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of solutions to the system and some related systems. (English)
Keyword: Chemotaxis system, nonlinear sensitivity, time-global existence
MSC: 35B45
MSC: 35K45
MSC: 35Q92
MSC: 92C17
.
Date available: 2019-09-27T07:36:14Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703026
.
Reference: [1] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity., J. Math. Anal. Appl., 424 (2015), pp. 675–684. MR 3286587, 10.1016/j.jmaa.2014.11.045
Reference: [2] Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity., Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), pp. 81–102. MR 3426833
Reference: [3] Fujie, K., T., Senba: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity., Nonlinearity, 29 (2016), pp. 2417–2450. MR 3538418, 10.1088/0951-7715/29/8/2417
Reference: [4] Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system., Preprint. MR 3816648
Reference: [5] Fujie, K., Yokota, T.: Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity., Appl. Math. Lett, 38 (2014), pp. 140–143. MR 3258217, 10.1016/j.aml.2014.07.021
Reference: [6] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions., European J. Appl. Math., 12 (2001), pp. 159–177. MR 1931303, 10.1017/S0956792501004363
Reference: [7] Mizoguchi, N., Winkler, M.: Is finite-time blow-up a generic phenomenon in the twodimensional Keller-Segel system?., Preprint.
Reference: [8] Mora, X.: Semilinear parabolic problems define semiflows on $C^k$ spaces., Trans. Amer. Math.Soc, 278 (1983), pp. 21–55. MR 0697059
Reference: [9] Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system., Adv. Math. Sci. Appl. 5 (1995), pp. 581–601. MR 1361006
Reference: [10] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis., Funkcial. Ekvac., 40 (1997), pp. 411-433. MR 1610709
Reference: [11] Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis., Adv. Math. Sci. Appl, 8 (1998), pp. 145–156. MR 1623326
Reference: [12] Quittner, P., Souplet, P.: Superlinear parabolic problems., Birkhäuser advanced text Basler Lehrbücher. Birkhäuser, Berlin, 2007. MR 2346798
Reference: [13] Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity., Nonlinear Analysis: Real World Applications, 12 (2011), pp. 3727–3740. MR 2833007
Reference: [14] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segelmodel., J. Differential Equations, 248 (2010), pp. 2889–2905. MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [15] Winkler, W.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity., Math. Methods Appl. Sci., 34 (2011), pp. 176–190. MR 2778870, 10.1002/mma.1346
Reference: [16] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system., J. Math. Pures Appl., 100 (2013), pp. 748–767. MR 3115832, 10.1016/j.matpur.2013.01.020
.

Files

Files Size Format View
Equadiff_14-2017-1_8.pdf 412.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo