Previous |  Up |  Next

Article

Title: Classical and generalized Jacobi polynomials orthogonal with different weight functions and differential equations satisfied by these polynomials (English)
Author: Marčoková, Mariana
Author: Guldan, Vladimír
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 287-294
.
Category: math
.
Summary: In this contribution we deal with classical Jacobi polynomials orthogonal with respect to different weight functions, their special cases - classical Legendre polynomials and generalized brothers of them. We derive expressions of generalized Legendre polynomials and generalized ultraspherical polynomials by means of classical Jacobi polynomials. (English)
Keyword: Orthogonal polynomial, weight function, classical Jacobi polynomial, classical Legendre polynomial, generalized orthogonal polynomial, differential equation
MSC: 33C45
MSC: 42C05
.
Date available: 2019-09-27T08:13:18Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703029
.
Reference: [1] Andrews, L. C.: Special Functions of Mathematics for Engineers., Second ed., McGraw-Hill, Inc., 1992. MR 1254207
Reference: [2] Hofman-Wellenhof, B., Moritz, H.: Physical Geodesy., Second ed., Springer, 2006.
Reference: [3] Janecki, D., Stepien, K.: Legendre polynomials used for the approximation of cylindrical surfaces., Communications - Scientific Letters of the University of Žilina, 4 (2005), 59–61.
Reference: [4] Korous, J.: Special Parts of Mathematics.. Orthogonal Functions and Orthogonal Polynomials, SNTL, Prague, 1958 (in Czech).
Reference: [5] Livermore, P. W., Jones, CH. A., HASH(0x2637898), Worland, S. J.: Spectral radial basis functions for full sphere computations., J. Comput. Phys., 227 (2007), 1209–1224. MR 2442392, 10.1016/j.jcp.2007.08.026
Reference: [6] Marčoková, M., Guldan, V.: Jacobi Polynomials and Some Related Functions., in Mathematical Methods in Engineering, N. M. F. Ferreira and J. A. T. Machado, eds., Springer, 2014, pp. 219–227.
Reference: [7] Mirevski, S. P., Boyadijev, L., HASH(0x263aa58), Scherer, R.: On the Riemann-Liouville fractional calculus, g-Jacobi functions and F-Gauss functions., Appl. Math. Comput., 187(1) (2007), 315–325. MR 2323584
Reference: [8] Sujetin, P. K.: Classical orthogonal polynomials., Nauka, Moskva, 1979 (in Russian). MR 0548727
Reference: [9] Szeg\"o, G.: Orthogonal polynomials., Nauka, Moskva, 1969 (in Russian). MR 0000077
Reference: [10] Tenzer, R.: Geopotential model of Earth - approximation of Earth shape, geopotential model testing methods., Communications - Scientific Letters of the University of Žilina, 4 (2001), 50–58.
Reference: [11] Tenzer, R.: Methodology for testing of geopotential model., Studies of University in Žilina, Civil Engineering series, 25 (2002), 113–116.
.

Files

Files Size Format View
Equadiff_14-2017-1_35.pdf 370.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo