Previous |  Up |  Next

Article

Title: A Note on the Uniqueness and Structure of Solutions to the Dirichlet Problem for Some Elliptic Systems (English)
Author: Chern, Jang-Long
Author: Yotsutani, Shoji
Author: Kawano, Nichiro
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 283-286
.
Category: math
.
Summary: In this note, we consider some elliptic systems on a smooth domain of $R^n$. By using the maximum principle, we can get a more general and complete results of the identical property of positive solution pair, and thus classify the structure of all positive solutions depending on the nonlinarities easily. (English)
Keyword: Elliptic system, uniqueness, solutions structure
MSC: 35B09
MSC: 35J57
MSC: 35J91
.
Date available: 2019-09-27T08:12:19Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703042
.
Reference: [1] Caffarelli, L. A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth., Comm. Pure Appl. Math. 42(1989), no. 3, 271–297. MR 0982351, 10.1002/cpa.3160420304
Reference: [2] Chern, Jann-Long, Kawano, Nichiro, Yotsutani, Shoji: Approximations and Analysis of Positive Solutions for Some Elliptic Systems., Preprint, 2017.
Reference: [3] Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations., Duke Math. J. 63 (1991), 615–622. MR 1121147
Reference: [4] Chen, C.-C., Lin, C.-S.: Uniqueness of the ground state solutions of $\Delta u + f(u)=0$ in $\Bbb R^n$, $n\ge3$., Comm. Partial Diff. Eqns 16 (1991), 1549-1572. MR 1132797
Reference: [5] Figueiredo, D.G. de, Lopes, O.: Solitary waves for some nonlinear Schr\"odinger systems., Ann. I. H. Poincaré Anal. Nonlinéaire 25 (2008), 149-161. MR 2383083, 10.1016/j.anihpc.2006.11.006
Reference: [6] Gidas, B., Ni, W. M., HASH(0x1e4a5c8), Nirenberg, L.: Symmetry and related properties via the maximum principle., Comm. Math. Phys. 68 (1979), 209-243. MR 0544879, 10.1007/BF01221125
Reference: [7] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order., Grundlehren der Mathematischen Wissenschaften. vol. 224, Springer-Verlag, Berlin, 1983. MR 0737190
Reference: [8] Kanna, T., Lakshmanan, M.: Effect of phase shift in shape changing collision of solitonsin coupled nonlinear Schrodinger equations., Topical issue on geometry, integrability and nonlinearity in condensed matter physics. Eur. Phys. J. B Condens. Matter Phys. 29 (2002), no. 2, 249–254. MR 1949959
Reference: [9] Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations., Invent. Math. 123 (1996), no. 2, 221–231. MR 1374197, 10.1007/s002220050023
Reference: [10] Li, C., Ma, L.: Uniqueness of positive bound states to Schrodinger systems with critical exponents., SIAM J. Math. Anal. 40 (2008), no. 3, 1049–1057. MR 2452879, 10.1137/080712301
Reference: [11] Lin, T., Wei, J.: Ground state of N coupled nonlinear Schrodinger equations in $\Bbb R^n$, $n\le3$., Comm. Math. Phys. 255 (2005), 629–653. MR 2135447, 10.1007/s00220-005-1313-x
Reference: [12] Lin, T., Wei, J.: Spikes in two coupled nonlinear Schrodinger equations., Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403–439. MR 2145720, 10.1016/j.anihpc.2004.03.004
Reference: [13] Li, Y.: On the positive solutions of the Matukuma equation., Duke Math, J. 70 (1993), no. 3, 575-589. MR 1224099, 10.1215/S0012-7094-93-07012-3
.

Files

Files Size Format View
Equadiff_14-2017-1_34.pdf 386.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo