Previous |  Up |  Next

Article

Title: An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems (English)
Author: Molati, Motlatsi
Author: Murakawa, Hideki
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 305-314
.
Category: math
.
Summary: This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible to realize the much faster computation rather than the nonlinear schemes with the same level of accuracy. In this paper, numerical experiments are carried out to demonstrate efficiency of the proposed scheme. (English)
Keyword: Stefan problem, Porous medium equation, Cross-diffusion system, Degenerate convection-reaction-diffusion equation, Linear scheme, Error estimate, Numerical method
MSC: 35K55
MSC: 65M12
MSC: 80A22
MSC: 92D25
.
Date available: 2019-09-27T08:15:42Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703037
.
Reference: [1] Barenblatt, G.I.: On some unsteady motion of a liquid or a gas in a porous medium., Prikl. Math. Meh., 16 (1952), pp. 67–78. MR 0046217
Reference: [2] Berger, A.E., Brezis, H., Rogers, J.C.W.: A numerical method for solving the problem $ut − \Delta f(u) = 0$., R.A.I.R.O. Anal. Numér., 13 (1979), pp. 297–312. MR 0555381
Reference: [3] Magenes, E., Nochetto, R.H., Verdi, C.: Energy error estimates for a linear scheme to approximate nonlinear parabolic problems., Math. Mod. Numer. Anal., 21 (1987), pp. 655–678. MR 0921832, 10.1051/m2an/1987210406551
Reference: [4] Molati, M., Murakawa, H.: Exact solutions of nonlinear diffusion-convection-reaction equation: A Lie symmetry analysis approach., preprint. MR 3854261
Reference: [5] Murakawa, H.: A linear scheme to approximate nonlinear cross-diffusion systems., Math. Mod. Numer. Anal., 45 (2011), pp. 1141–1161. MR 2833176, 10.1051/m2an/2011010
Reference: [6] Murakawa, H.: Error estimates for discrete-time approximations of nonlinear cross-diffusion systems., SIAM J. Numer. Anal., 52(2) (2014), pp. 955–974. MR 3196950, 10.1137/130911019
Reference: [7] Murakawa, H.: A linear finite volume method for nonlinear cross-diffusion systems., Numer. Math., 136(1) (2017), pp. 1–26. MR 3632917, 10.1007/s00211-016-0832-z
Reference: [8] Murakawa, H.: An efficient linear scheme to approximate nonlinear diffusion problems., to appear in Jpn. J. Ind. Appl. Math., DOI: 10.1007/s13160-017-0279-3. MR 3768238, 10.1007/s13160-017-0279-3
Reference: [9] Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species., J. Theor. Biol., 79 (1979), pp. 83–99. MR 0540951, 10.1016/0022-5193(79)90258-3
.

Files

Files Size Format View
Equadiff_14-2017-1_37.pdf 1.029Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo