Previous |  Up |  Next

Article

Title: Continuous dependence for BV-entropy solutions to strongly degenerate parabolic equations with variable coefficients (English)
Author: Watanabe, Hiroshi
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 315-324
.
Category: math
.
Summary: We consider the Cauchy problem for degenerate parabolic equations with variable coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends on the spatial and time variables. In this paper, we prove the continuous dependence for entropy solutions in the space BV to the problem not only initial function but also all coefficients. (English)
Keyword: Strongly degenerate parabolic, continuous dependence, BV -entropy solution
MSC: 35K55
MSC: 35K65
MSC: 35L65
.
Date available: 2019-09-27T08:16:58Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703051
.
Reference: [1] Ambrosio, L., Crasta, G., Cicco, V. De, Philippis, G. De: A nonautonomous chain rule in $W^{1,p}$ and BV., Manuscripta Math. 140 (2013) no.3, 461–480. MR 3019135
Reference: [2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems., Oxford Science Publications, (2000). MR 1857292
Reference: [3] Carrillo, J.: Entropy solutions for nonlinear degenerate problems., Arch. Rational. Anal., 147 (1999), 269-361. MR 1709116, 10.1007/s002050050152
Reference: [4] Chen, G. Q., Karlsen, K. H.: Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients., Commun. Pure Appl. Anal., 4 (2005), 241–266. MR 2149515, 10.3934/cpaa.2005.4.241
Reference: [5] Chen, G. Q., B.: Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations., Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(4) (2003), 645–668. MR 1981403, 10.1016/S0294-1449(02)00014-8
Reference: [6] Evans, L. C., Gariepy, R.: Measure theory and fine properties of functions., Studies in Advanced Math., CRC Press, London, (1992). MR 1158660
Reference: [7] Karlsen, K. H., Risebro, N. H.: On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients., Discrete Contin. Dyn., 9(5) (2003),1081–1104. MR 1974417
Reference: [8] Kružkov, S. N.: First order quasilinear equations in several independent variables., Math. USSR Sbornik, 10 (1970), 217-243. MR 0267257, 10.1070/SM1970v010n02ABEH002156
Reference: [9] Vol’pert, A. I., Hudjaev, S. I.: Cauchy’s problem for degenerate second order quasi-linear parabolic equations., Math. USSR-Sb., 7 (1969), 365-387. 10.1070/SM1969v007n03ABEH001095
Reference: [10] Watanabe, H.: Entropy solutions to strongly degenerate parabolic equations with zero-flux boundary conditions., Adv. Math. Sci. Appl., 23 (2013), no. 1, 209–234. MR 3155452
Reference: [11] Watanabe, H.: Strongly degenerate parabolic equations with variable coefficients., Adv. Math. Sci. Appl., 26 (2017), 143–173. MR 3821859
Reference: [12] Watanabe, H., Oharu, S.: BV-entropy solutions to strongly degenerate parabolic equations., Adv. Differential Equations 15(7-8) (2010), 757–800. MR 2650587
Reference: [13] Watanabe, H., Oharu, S.: Finite-difference approximations to a class of strongly degenerate parabolic equations., Adv. Math. Sci. Appl., 20 (2010), no. 2, 319–347. MR 2815744
Reference: [14] Ziemer, W. P.: Weakly differentiable functions., Springer-Verlag, New York, (1989). MR 1014685
.

Files

Files Size Format View
Equadiff_14-2017-1_38.pdf 450.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo