Title:
|
A generalization of the Keller-Segel system to higher dimensions from a structural viewpoint (English) |
Author:
|
Fujie, Kentarou |
Author:
|
Senba, Takasi |
Language:
|
English |
Journal:
|
Proceedings of Equadiff 14 |
Volume:
|
Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017 |
Issue:
|
2017 |
Year:
|
|
Pages:
|
275-282 |
. |
Category:
|
math |
. |
Summary:
|
We consider initial boundary problems of a two-chemical substances chemotaxis system. In the four-dimensional setting, it was shown that solutions exist globally in time and remain bounded if the total mass is less than $(8\pi)^2$, whereas the solution emanating from some initial data of large magnitude may blows up. This result can be regarded as a generalization of the well-known $8\pi$ problem in the Keller–Segel system to higher dimensions. We will compare mathematical structures of the Keller–Segel system and our system and discuss the difference. (English) |
Keyword:
|
Chemotaxis; global existence; Lyapunov functional; Adams’ inequality |
MSC:
|
35B45 |
MSC:
|
35K45 |
MSC:
|
35Q92 |
MSC:
|
92C17 |
. |
Date available:
|
2019-09-27T08:11:05Z |
Last updated:
|
2019-09-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/703047 |
. |
Reference:
|
[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues.. Math. Models Methods Appl. Sci. 25 (2015), 1663–1763. MR 3351175, 10.1142/S021820251550044X |
Reference:
|
[2] Biler, P., Karch, G., cot, P. Lauren\c, Nadzieja, T.: The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc.. Topol. Methods Nonlinear Anal. 27 (2006), 133–147. MR 2236414 |
Reference:
|
[3] Biler, P., Nadzieja, T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles.. I. Colloq. Math. 66 (1994), 319–334. MR 1268074, 10.4064/cm-66-2-319-334 |
Reference:
|
[4] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces.. Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. MR 3294230, 10.3934/dcds.2015.35.1891 |
Reference:
|
[5] Chang, S.Y.A., Yang, P.: Conformal deformation of metrics on $S^2$.. J. Differential Geom. 27 (1988), 259–296. MR 0925123, 10.4310/jdg/1214441783 |
Reference:
|
[6] Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity.. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 81–102. MR 3426833 |
Reference:
|
[7] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity.. Nonlinearity 29 (2016), 2417–2450. MR 3538418, 10.1088/0951-7715/29/8/2417 |
Reference:
|
[8] Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system.. J. Differential Equations 263 (2017), 88–148. MR 3631302, 10.1016/j.jde.2017.02.031 |
Reference:
|
[9] Fujie, K., Senba, T.: Blow-up of solutions to a two-chemical substances chemotaxis system in the critical dimension.. In preparation. MR 3906204 |
Reference:
|
[10] Gajewski, H., Zacharias, K.: On a reaction-diffusion system modelling chemotaxis.. International Conference on Differential Equations, Vol. 1, 2 (Berlin 1999), 1098–1103, World Sci. Publ., River Edge, NJ, 2000. MR 1870292 |
Reference:
|
[11] Herrero, M.A, Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model.. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 663–683. MR 1627338 |
Reference:
|
[12] Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis.. J. Math. Biol. 58 (2009), 183–217. MR 2448428, 10.1007/s00285-008-0201-3 |
Reference:
|
[13] Horstmann, D.: On the existence of radially symmetric blow-up solutions for the Keller-Segel model.. J. Math. Biol. 44 (2002), 463–478. MR 1908133, 10.1007/s002850100134 |
Reference:
|
[14] Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences.. I. Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165. MR 2013508 |
Reference:
|
[15] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions.. European J. Appl. Math. 12 (2001), 159–177. MR 1931303, 10.1017/S0956792501004363 |
Reference:
|
[16] J\"ager, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis.. Trans. Amer. Math. Soc. 329 (1992), 819–824. MR 1046835, 10.1090/S0002-9947-1992-1046835-6 |
Reference:
|
[17] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability.. J.Theor. Biol. 26 (1970), 399–415. MR 3925816, 10.1016/0022-5193(70)90092-5 |
Reference:
|
[18] Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system.. Adv. Math. Sci. Appl. 5 (1995), 581–601. MR 1361006 |
Reference:
|
[19] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis.. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411–433. MR 1610709 |
Reference:
|
[20] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations.. Funkcial. Ekvac. 44 (2001), 441–469. MR 1893940 |
Reference:
|
[21] Ruf, B., Sani, F.: Sharp Adams-type inequalities in $\Bbb R^n$.. Trans. Amer. Math. Soc. 365 (2013), 645–670. MR 2995369, 10.1090/S0002-9947-2012-05561-9 |
Reference:
|
[22] Sugiyama, Y.: On $\varepsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems.. SIAM J. Math. Anal. 41 (2009), 1664–1692. MR 2556579, 10.1137/080721078 |
Reference:
|
[23] Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical biology.. Adv. Differential Equations 6 (2001), 21–50. MR 1799679 |
Reference:
|
[24] Tarsi, C.: Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces.. Potential Anal. 37 (2012), 353–385. MR 2988207, 10.1007/s11118-011-9259-4 |
Reference:
|
[25] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system.. J. Math. Pures Appl. 100 (2013), 748–767. MR 3115832, 10.1016/j.matpur.2013.01.020 |
. |