Previous |  Up |  Next

Article

Title: Numerical study on the blow-up rate to a quasilinear parabolic equation (English)
Author: Anada, Koichi
Author: Ishiwata, Tetsuya
Author: Ushijima, Takeo
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 325-330
.
Category: math
.
Summary: In this paper, we consider the blow-up solutions for a quasilinear parabolic partial differential equation $u_t = u^2(u_{xx}+u)$. We numerically investigate the blow-up rates of these solutions by using a numerical method which is recently proposed by the authors [3]. (English)
Keyword: Blow-up rate, type II blow-up, numerical estimate, scale invariance, rescaling algorithm, curvature flow
MSC: 35B44
MSC: 35K59
MSC: 65M99
.
Date available: 2019-09-27T08:17:58Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703052
.
Reference: [1] Anada, K., Fukuda, I., Tsutsumi, M.: Regional blow-up and decay of solutions to the Initial-Boundary value problem for $u_t = uu_{xx} − \gamma(u_x)^2 + ku^2$., Funkcialaj Ekvacioj, 39 (1996), pp. 363–387. MR 1433906
Reference: [2] Anada, K., Ishiwata, T.: Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation., J. Differential Equations, 262 (2017), pp. 181–271. MR 3567485, 10.1016/j.jde.2016.09.023
Reference: [3] Anada, K., Ishiwata, T., Ushijima, T.: A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm., to appear in Japan J. Ind. Appl. Math. MR 3768236
Reference: [5] Andrews, B.: Singularities in crystalline curvature flows., Asian J. Math., 6 (2002), pp. 101–122. MR 1902649, 10.4310/AJM.2002.v6.n1.a6
Reference: [6] Angenent, S. B.: On the formation of singularities in the curve shortening flow., J. Diff. Geo. 33 (1991), pp. 601–633. MR 1100205, 10.4310/jdg/1214446558
Reference: [7] Angenent, S. B., Velázquez, J. J. L.: Asymptotic shape of cusp singularities in curve shortening., Duke Math. J., 77 (1995), pp. 71–110. MR 1317628, 10.1215/S0012-7094-95-07704-7
Reference: [8] Berger, M., Kohn, R. V.: A rescaling algorithm for the numerical calculation of blowing-up solutions., Cmmm. Pure Appl. Math., 41 (1988), pp. 841–863. MR 0948774, 10.1002/cpa.3160410606
Reference: [9] Friedman, A., McLeod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations., Arch. Rational Mech. Anal., 96 (1987), pp. 55–80. MR 0853975, 10.1007/BF00251413
Reference: [10] Ishiwata, T., Yazaki, S.: On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion., J. Comput. Appl. Math., 159 (2003), pp. 55–64. MR 2022315, 10.1016/S0377-0427(03)00556-9
Reference: [11] Watterson, P. A.: Force-free magnetic evolution in the reversed-field pinch., Thesis, Cambridge University (1985).
Reference: [12] Winkler, M.: Blow-up in a degenerate parabolic equation., Indiana Univ. Math. J., 53 (2004), pp. 1415–1442. MR 2104284, 10.1512/iumj.2004.53.2451
.

Files

Files Size Format View
Equadiff_14-2017-1_39.pdf 466.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo