Previous |  Up |  Next

Article

Title: Toward a mathematical analysis for a model of suspension flowing down an inclined plane (English)
Author: Matsue, Kaname
Author: Tomoeda, Kyoko
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 349-358
.
Category: math
.
Summary: We consider the Riemann problem of the dilute approximation equations with spatiotemporally dependent volume fractions from the full model of suspension, in which the particles settle to the solid substrate and the clear liquid film flows over the sediment [Murisic et al., J. Fluid. Mech. 717, 203–231 (2013)]. We present a method to find shock waves, rarefaction waves for the Riemann problem of this system. Our method is mainly based on [Smoller, Springer-Verlag, New York, second edition, (1994)]. (English)
Keyword: Hyperbolic conservation law, Riemann problem, shock wave, rarefaction, suspension, dilute approximation
MSC: 03-06
MSC: 35L65
.
Date available: 2019-09-27T08:20:48Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703057
.
Reference: [1] Huppert, H.: Flow and instability of a viscous current down a slope., Nature, 300 427–429, (1982). 10.1038/300427a0
Reference: [2] Lax, P. D.: Hyperbolic system of conservation laws II., Comm. Pure Appl. Math. 10 537–566, (1957). MR 0093653, 10.1002/cpa.3160100406
Reference: [3] Mavromoustaki, A., Bertozzi, A. L.: Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows., Journal of Engineering Mathematics 88 29–48, (2014). MR 3254624, 10.1007/s10665-014-9688-3
Reference: [4] HASH(0x18aeb08): .[4] N. Murisic, B. Pausader, D. Peschka, A. L. Bertozzi, //Dynamics of particle settling and resuspension in viscous liquids/, J. Fluid Mech. 717 203–231, (2013). MR 3018604, 10.1017/jfm.2012.567
Reference: [5] Schecter, S., Marchesin, D., Plohr, B. J.: Structurally stable Riemann solutions., J. Differential Equations 126, no. 2, 303–354, (1996). MR 1383980, 10.1006/jdeq.1996.0053
Reference: [6] Smoller, J.: Shock waves and reaction-diffusion equations., Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 258 Vol. 258, Springer-Verlag, New York, second edition, (1994). MR 1301779, 10.1007/978-1-4612-0873-0_14
.

Files

Files Size Format View
Equadiff_14-2017-1_42.pdf 457.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo