Previous |  Up |  Next

Article

References:
[1] M. Petrich: The maximal semilattice decomposition of a semigroup. Math. Z. 85 (1964), 68-82. DOI 10.1007/BF01114879 | MR 0167552 | Zbl 0124.25801
[2] M. Petrich: Introduction to semigroups. Merrill Publishing Company, 1973. MR 0393206 | Zbl 0321.20037
[3] M. S. Putcha: Semilattice decompositions of semigroups. Semigroup Forum, 6 (1973), 12-34. DOI 10.1007/BF02389104 | MR 0369582 | Zbl 0256.20074
[4] M. S. Putcha: Minimal sequences in semigroups. Trans. Amer. Math. Soc. 189 (1974), 93-106. DOI 10.1090/S0002-9947-1974-0338233-4 | MR 0338233 | Zbl 0282.20055
[5] M. S. Putcha: Semigroups in which a power of each element lies in a subgroup. Semigroup Forum, 5 (1973), 354-361. MR 0316613 | Zbl 0259.20052
[6] M. S. Putcha: Paths in graphs and minimal $\pi$-sequences in semigroups. Discrete Math. 11(1975), 173-185. DOI 10.1016/0012-365X(75)90009-6 | MR 0360885 | Zbl 0315.05114
[7] M. S. Putcha: Positive quasi-orders on semigroups. Duke Math. J. 40 (1973), 857-869. DOI 10.1215/S0012-7094-73-04079-9 | MR 0338232 | Zbl 0281.20057
[8] T. Tamura: The theory of construction of finite semigroups I. Osaka Math. J. 8 (1956), 243-261. MR 0083497 | Zbl 0073.01003
[9] T. Tamura: Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup. Proc. Japan. Acad. 40 (1964), 117-1^0. MR 0179282 | Zbl 0135.04001
[10] T. Tamura: Quasi-orders, generalized archimedeaness and semilattice decompositions. Math. Nachr. 68(1975), 201-220. DOI 10.1002/mana.19750680115 | MR 0387462 | Zbl 0325.06002
[11] T. Tamura: Note on the greatest semilattice decomposition of semigroups. Semigroup Forum, 4 (1972), 255-261. DOI 10.1007/BF02570795 | MR 0307990 | Zbl 0261.20058
[12] T. Tamura: Semilattice congruences viewed from quasi-orders. Proc. A.M.S. 41 (1973), 75-79. MR 0333048 | Zbl 0275.20106
[13] T. Tamura: Remark on the smallest semilattice congruence. Semigroup Forum, 5 (1973), 277-282. DOI 10.1007/BF02572900 | MR 0320193 | Zbl 0262.20072
[14] B. M. Schein: On certain classes of semigroups of binary relations. (in Russian), Sibirsk. Mat. Žurn. 6 (1965), 616-635. MR 0193170
Partner of
EuDML logo