Title:
|
Positive functions from $\mathcal{S}$-indecomposable semigroups into partially ordered sets (English) |
Author:
|
Putcha, Mohan S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
26 |
Issue:
|
1 |
Year:
|
1976 |
Pages:
|
161-170 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
20M10 |
idZBL:
|
Zbl 0338.20087 |
idMR:
|
MR0390102 |
DOI:
|
10.21136/CMJ.1976.101383 |
. |
Date available:
|
2008-06-09T14:17:11Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101383 |
. |
Reference:
|
[1] M. Petrich: The maximal semilattice decomposition of a semigroup.Math. Z. 85 (1964), 68-82. Zbl 0124.25801, MR 0167552, 10.1007/BF01114879 |
Reference:
|
[2] M. Petrich: Introduction to semigroups.Merrill Publishing Company, 1973. Zbl 0321.20037, MR 0393206 |
Reference:
|
[3] M. S. Putcha: Semilattice decompositions of semigroups.Semigroup Forum, 6 (1973), 12-34. Zbl 0256.20074, MR 0369582, 10.1007/BF02389104 |
Reference:
|
[4] M. S. Putcha: Minimal sequences in semigroups.Trans. Amer. Math. Soc. 189 (1974), 93-106. Zbl 0282.20055, MR 0338233, 10.1090/S0002-9947-1974-0338233-4 |
Reference:
|
[5] M. S. Putcha: Semigroups in which a power of each element lies in a subgroup.Semigroup Forum, 5 (1973), 354-361. Zbl 0259.20052, MR 0316613 |
Reference:
|
[6] M. S. Putcha: Paths in graphs and minimal $\pi$-sequences in semigroups.Discrete Math. 11(1975), 173-185. Zbl 0315.05114, MR 0360885, 10.1016/0012-365X(75)90009-6 |
Reference:
|
[7] M. S. Putcha: Positive quasi-orders on semigroups.Duke Math. J. 40 (1973), 857-869. Zbl 0281.20057, MR 0338232, 10.1215/S0012-7094-73-04079-9 |
Reference:
|
[8] T. Tamura: The theory of construction of finite semigroups I..Osaka Math. J. 8 (1956), 243-261. Zbl 0073.01003, MR 0083497 |
Reference:
|
[9] T. Tamura: Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup.Proc. Japan. Acad. 40 (1964), 117-1^0. Zbl 0135.04001, MR 0179282 |
Reference:
|
[10] T. Tamura: Quasi-orders, generalized archimedeaness and semilattice decompositions.Math. Nachr. 68(1975), 201-220. Zbl 0325.06002, MR 0387462, 10.1002/mana.19750680115 |
Reference:
|
[11] T. Tamura: Note on the greatest semilattice decomposition of semigroups.Semigroup Forum, 4 (1972), 255-261. Zbl 0261.20058, MR 0307990, 10.1007/BF02570795 |
Reference:
|
[12] T. Tamura: Semilattice congruences viewed from quasi-orders.Proc. A.M.S. 41 (1973), 75-79. Zbl 0275.20106, MR 0333048 |
Reference:
|
[13] T. Tamura: Remark on the smallest semilattice congruence.Semigroup Forum, 5 (1973), 277-282. Zbl 0262.20072, MR 0320193, 10.1007/BF02572900 |
Reference:
|
[14] B. M. Schein: On certain classes of semigroups of binary relations.(in Russian), Sibirsk. Mat. Žurn. 6 (1965), 616-635. MR 0193170 |
. |