Previous |  Up |  Next

Article

Title: Positive functions from $\mathcal{S}$-indecomposable semigroups into partially ordered sets (English)
Author: Putcha, Mohan S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 26
Issue: 1
Year: 1976
Pages: 161-170
Summary lang: Russian
.
Category: math
.
MSC: 20M10
idZBL: Zbl 0338.20087
idMR: MR0390102
DOI: 10.21136/CMJ.1976.101383
.
Date available: 2008-06-09T14:17:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101383
.
Reference: [1] M. Petrich: The maximal semilattice decomposition of a semigroup.Math. Z. 85 (1964), 68-82. Zbl 0124.25801, MR 0167552, 10.1007/BF01114879
Reference: [2] M. Petrich: Introduction to semigroups.Merrill Publishing Company, 1973. Zbl 0321.20037, MR 0393206
Reference: [3] M. S. Putcha: Semilattice decompositions of semigroups.Semigroup Forum, 6 (1973), 12-34. Zbl 0256.20074, MR 0369582, 10.1007/BF02389104
Reference: [4] M. S. Putcha: Minimal sequences in semigroups.Trans. Amer. Math. Soc. 189 (1974), 93-106. Zbl 0282.20055, MR 0338233, 10.1090/S0002-9947-1974-0338233-4
Reference: [5] M. S. Putcha: Semigroups in which a power of each element lies in a subgroup.Semigroup Forum, 5 (1973), 354-361. Zbl 0259.20052, MR 0316613
Reference: [6] M. S. Putcha: Paths in graphs and minimal $\pi$-sequences in semigroups.Discrete Math. 11(1975), 173-185. Zbl 0315.05114, MR 0360885, 10.1016/0012-365X(75)90009-6
Reference: [7] M. S. Putcha: Positive quasi-orders on semigroups.Duke Math. J. 40 (1973), 857-869. Zbl 0281.20057, MR 0338232, 10.1215/S0012-7094-73-04079-9
Reference: [8] T. Tamura: The theory of construction of finite semigroups I..Osaka Math. J. 8 (1956), 243-261. Zbl 0073.01003, MR 0083497
Reference: [9] T. Tamura: Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup.Proc. Japan. Acad. 40 (1964), 117-1^0. Zbl 0135.04001, MR 0179282
Reference: [10] T. Tamura: Quasi-orders, generalized archimedeaness and semilattice decompositions.Math. Nachr. 68(1975), 201-220. Zbl 0325.06002, MR 0387462, 10.1002/mana.19750680115
Reference: [11] T. Tamura: Note on the greatest semilattice decomposition of semigroups.Semigroup Forum, 4 (1972), 255-261. Zbl 0261.20058, MR 0307990, 10.1007/BF02570795
Reference: [12] T. Tamura: Semilattice congruences viewed from quasi-orders.Proc. A.M.S. 41 (1973), 75-79. Zbl 0275.20106, MR 0333048
Reference: [13] T. Tamura: Remark on the smallest semilattice congruence.Semigroup Forum, 5 (1973), 277-282. Zbl 0262.20072, MR 0320193, 10.1007/BF02572900
Reference: [14] B. M. Schein: On certain classes of semigroups of binary relations.(in Russian), Sibirsk. Mat. Žurn. 6 (1965), 616-635. MR 0193170
.

Files

Files Size Format View
CzechMathJ_26-1976-1_18.pdf 993.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo