Title:
|
Hypergraphs and intervals (English) |
Author:
|
Nebeský, Ladislav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
31 |
Issue:
|
3 |
Year:
|
1981 |
Pages:
|
469-474 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
05C65 |
MSC:
|
05C75 |
idZBL:
|
Zbl 0473.05047 |
idMR:
|
MR626920 |
DOI:
|
10.21136/CMJ.1981.101761 |
. |
Date available:
|
2008-06-09T14:45:16Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101761 |
. |
Reference:
|
[1] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston 1979. MR 0525578 |
Reference:
|
[2] С. Berge: Graphs and Hypergraphs.North-Holland, Amsterdam 1973. Zbl 0254.05101 |
Reference:
|
[3] K. P. Eswaran: Faithful representation of a family of sets by a set of intervals.SIAM J. Comput. 4 (1975), 56-68. Zbl 0294.68007, MR 0378509, 10.1137/0204005 |
Reference:
|
[4] D. R. Fulkerson, O. Gross: Incidence matrices and interval graphs.Рас. J. Math. 15 (1965), 835-855. Zbl 0132.21001, MR 0186421 |
Reference:
|
[5] P. C. Gilmore, A. J. Hoffman: A characterization of comparability graphs and of interval graphs.Canad. J. Math. 16 (1964), 539-548. Zbl 0121.26003, MR 0175811, 10.4153/CJM-1964-055-5 |
Reference:
|
[6] F. Harary: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 0196.27202, MR 0256911 |
Reference:
|
[7] C. G. Lekkerkerker, J. Ch. Boland: Representation of a finite graph by a set of intervals on the real line.Fund. Math. 51 (1962), 45-64. Zbl 0105.17501, MR 0139159, 10.4064/fm-51-1-45-64 |
Reference:
|
[8] L. Nebeský: Graph theory and linguistics.In: Applications of Graph Theory (R. J. Wilson and L. W. Beineke, eds.). Academic Press, London 1979, pp. 357-380. MR 0567125 |
Reference:
|
[9] L. Nebeský: On a certain numbering of the vertices of a hypergraph.To appear. MR 0687411 |
Reference:
|
[10] W. T. Trotter, Jr., J. I. Moore, Jr.: Characterization problems for graphs, partially ordered sets, lattices, and families of sets.Discrete Math. 16 (1976), 361 - 381. MR 0450140, 10.1016/S0012-365X(76)80011-8 |
Reference:
|
[11] A. Tucker: A structure theorem for the consecutive 1's property.J. Combinatorial Theory 12 (B) (1972), 153-162. Zbl 0208.52402, MR 0295938, 10.1016/0095-8956(72)90019-6 |
. |