Previous |  Up |  Next

Article

Title: Hypergraphs and intervals (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 31
Issue: 3
Year: 1981
Pages: 469-474
Summary lang: Russian
.
Category: math
.
MSC: 05C65
MSC: 05C75
idZBL: Zbl 0473.05047
idMR: MR626920
DOI: 10.21136/CMJ.1981.101761
.
Date available: 2008-06-09T14:45:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101761
.
Reference: [1] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston 1979. MR 0525578
Reference: [2] С. Berge: Graphs and Hypergraphs.North-Holland, Amsterdam 1973. Zbl 0254.05101
Reference: [3] K. P. Eswaran: Faithful representation of a family of sets by a set of intervals.SIAM J. Comput. 4 (1975), 56-68. Zbl 0294.68007, MR 0378509, 10.1137/0204005
Reference: [4] D. R. Fulkerson, O. Gross: Incidence matrices and interval graphs.Рас. J. Math. 15 (1965), 835-855. Zbl 0132.21001, MR 0186421
Reference: [5] P. C. Gilmore, A. J. Hoffman: A characterization of comparability graphs and of interval graphs.Canad. J. Math. 16 (1964), 539-548. Zbl 0121.26003, MR 0175811, 10.4153/CJM-1964-055-5
Reference: [6] F. Harary: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 0196.27202, MR 0256911
Reference: [7] C. G. Lekkerkerker, J. Ch. Boland: Representation of a finite graph by a set of intervals on the real line.Fund. Math. 51 (1962), 45-64. Zbl 0105.17501, MR 0139159, 10.4064/fm-51-1-45-64
Reference: [8] L. Nebeský: Graph theory and linguistics.In: Applications of Graph Theory (R. J. Wilson and L. W. Beineke, eds.). Academic Press, London 1979, pp. 357-380. MR 0567125
Reference: [9] L. Nebeský: On a certain numbering of the vertices of a hypergraph.To appear. MR 0687411
Reference: [10] W. T. Trotter, Jr., J. I. Moore, Jr.: Characterization problems for graphs, partially ordered sets, lattices, and families of sets.Discrete Math. 16 (1976), 361 - 381. MR 0450140, 10.1016/S0012-365X(76)80011-8
Reference: [11] A. Tucker: A structure theorem for the consecutive 1's property.J. Combinatorial Theory 12 (B) (1972), 153-162. Zbl 0208.52402, MR 0295938, 10.1016/0095-8956(72)90019-6
.

Files

Files Size Format View
CzechMathJ_31-1981-3_11.pdf 835.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo