Previous |  Up |  Next

Article

Title: On the Stiefel-Whitney classes and the span of real Grassmannians (English)
Author: Korbaš, Július
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 4
Year: 1986
Pages: 541-552
Summary lang: Russian
.
Category: math
.
MSC: 57R20
MSC: 57T15
idZBL: Zbl 0622.57018
idMR: MR863186
DOI: 10.21136/CMJ.1986.102115
.
Date available: 2008-06-09T15:12:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102115
.
Reference: [1] Adams J. F.: Vector fields on spheres.Ann. Math. 75, 603 - 632 (1962). Zbl 0112.38102, MR 0139178, 10.2307/1970213
Reference: [2] Andrews G. E.: The theory of partitions.Encyclopedia of Mathematics and its Applications 2. London, Amsterdam, Don Mills-Ontario, Sydney, Tokyo: Addison-Wesley Publishing Company 1976. Zbl 0371.10001, MR 0557013
Reference: [3] Bartík V., Korbaš J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds.Rend. Circ. Mat. Palermo (2) (Suppl. 6), 19-29 (1984). MR 0782702
Reference: [4] Borel A.: La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helvetici 27, 165-197 (1953). MR 0057541, 10.1007/BF02564561
Reference: [5] Hsiang W. С, Szczarba R. H.: On the tangent bundle of a Grassmann manifold.Amer. J. Math. 86, 698-704 (1964). MR 0172304, 10.2307/2373153
Reference: [6] Korbaš J.: Vector fields on real flag manifolds.Ann. Glob. Analysis and Geometry 3, 173-184 (1985). MR 0809636, 10.1007/BF01000338
Reference: [7] Korbaš J.: Some partial formulae for Stiefel-Whitney classes of Grassmannians.(to appear). MR 0863185
Reference: [8] Leite M. L., de Miatello I. D.: Linear vector fields on $\tilde{G}_k(R^n)$.Proc. Amer. Math. Soc. 80, 673-677 (1980). MR 0587953, 10.1090/S0002-9939-1980-0587953-3
Reference: [9] Milnor J. W., Stasheff J. D.: Characteristic classes.Annals of Mathematics Studies 16. Princeton: Princeton University Press 1974. Zbl 0298.57008, MR 0440554
Reference: [10] Thomas E.: On tensor products of $n$-plane bundles.Arch. Math. X, 174-179 (1959). Zbl 0192.29501, MR 0107234, 10.1007/BF01240783
Reference: [11] Thomas E.: Postnikov invariants and higher order cohomology operations.Ann. Math. 85, 184-217 (1967). Zbl 0152.22002, MR 0210135, 10.2307/1970439
.

Files

Files Size Format View
CzechMathJ_36-1986-4_4.pdf 1.210Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo