Previous |  Up |  Next

Article

References:
[1] Balbás A., P. Jimenez Guerra: Un teorema de Radon-Nikodym para integrales bilineales. Rev. R. Acad. Ci. Madrid. 78 (1984), 217-220. MR 0799707
[2] Balbás A., P. Jimenez Guerra: A Radon-Nikodym theorem for a bilinear integral in locally convex spaces. Math. Japonica, 32 (1987). MR 0927459
[3] Ballvé M. E.: Integración vectorial bilineal. U.N.E.D., 1984.
[4] Bartle R. G.: A general bilinear vector integral. Studia Math., 15 (1956), 337-352. MR 0080721 | Zbl 0070.28102
[5] Bombai F.: Medida e integración en espacios bornológicos Rev. R. Acad. Ci. Madrid, 65 (1981), 115-137.
[6] Bombai F.: El theorema de Radon-Nikodym en espacios bornológicos. Rev. R. Acad. Ci. Madrid, 65 (1981), 140-154.
[7] Devieve С.: Integration of vector valued functions with respect to vector valued measures. Rev. Roum. Math. R et Appl., 26 (1981), 943-957. MR 0627463
[8] Dobrakov I.: On integration in Banach spaces I. Czech. Math. J., 20 (95) (1970), 511-536. MR 0365138 | Zbl 0215.20103
[9] Dobrakov I.: On integration in Banach spaces II. Czech. Math. h,20 (95) (1970), 680-695. MR 0365139 | Zbl 0224.46050
[10] Dobrakov I.: On representation of linear operators on $C_0$(T, X). Czech. Math. J., 21 (96) (1971), 13-30. MR 0276804
[11] Dunford N., J. Schwartz: Linear operators part I. Interscience Pub., New York, 1958. MR 0117523
[12] Maynard H. В.: A Radon-Nikodym theorem for operator-valued measures. Trans. Amer. Math. Soc, 775 (1972), 449-463. MR 0310187 | Zbl 0263.28008
[13] Rao Chivukula R., A. S. Sastry: Product vector measures via Bartle integrals. J. Math. Anal. and App., 96 (1983), 180-195. DOI 10.1016/0022-247X(83)90035-5 | MR 0717502 | Zbl 0551.28009
[14] Sivasankara S. A.: Vector integrals and product of vector measures. Univ. Microfilm. Inter., Michigan, 1983.
[15] Smith W. V., D. H. Tucker: Weak integral convergence theorems and operator measures. Pacific J. Math., 111 (1984), 243-256. DOI 10.2140/pjm.1984.111.243 | MR 0732069 | Zbl 0569.46021
Partner of
EuDML logo