Previous |  Up |  Next

Article

Title: Representation of operators by bilinear integrals (English)
Author: Balbás de la Corte, Alejandro
Author: Jiménez Guerra, Pedro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 4
Year: 1987
Pages: 551-558
.
Category: math
.
MSC: 46G10
MSC: 47B99
idZBL: Zbl 0644.47033
idMR: MR913988
DOI: 10.21136/CMJ.1987.102183
.
Date available: 2008-06-09T15:17:59Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102183
.
Reference: [1] Balbás A., P. Jimenez Guerra: Un teorema de Radon-Nikodym para integrales bilineales.Rev. R. Acad. Ci. Madrid. 78 (1984), 217-220. MR 0799707
Reference: [2] Balbás A., P. Jimenez Guerra: A Radon-Nikodym theorem for a bilinear integral in locally convex spaces.Math. Japonica, 32 (1987). MR 0927459
Reference: [3] Ballvé M. E.: Integración vectorial bilineal.U.N.E.D., 1984.
Reference: [4] Bartle R. G.: A general bilinear vector integral.Studia Math., 15 (1956), 337-352. Zbl 0070.28102, MR 0080721, 10.4064/sm-15-3-337-352
Reference: [5] Bombai F.: Medida e integración en espacios bornológicos Rev.R. Acad. Ci. Madrid, 65 (1981), 115-137.
Reference: [6] Bombai F.: El theorema de Radon-Nikodym en espacios bornológicos.Rev. R. Acad. Ci. Madrid, 65 (1981), 140-154.
Reference: [7] Devieve С.: Integration of vector valued functions with respect to vector valued measures.Rev. Roum. Math. R et Appl., 26 (1981), 943-957. MR 0627463
Reference: [8] Dobrakov I.: On integration in Banach spaces I.Czech. Math. J., 20 (95) (1970), 511-536. Zbl 0215.20103, MR 0365138
Reference: [9] Dobrakov I.: On integration in Banach spaces II.Czech. Math. h,20 (95) (1970), 680-695. Zbl 0224.46050, MR 0365139
Reference: [10] Dobrakov I.: On representation of linear operators on $C_0$(T, X).Czech. Math. J., 21 (96) (1971), 13-30. MR 0276804
Reference: [11] Dunford N., J. Schwartz: Linear operators part I.Interscience Pub., New York, 1958. MR 0117523
Reference: [12] Maynard H. В.: A Radon-Nikodym theorem for operator-valued measures.Trans. Amer. Math. Soc, 775 (1972), 449-463. Zbl 0263.28008, MR 0310187
Reference: [13] Rao Chivukula R., A. S. Sastry: Product vector measures via Bartle integrals.J. Math. Anal. and App., 96 (1983), 180-195. Zbl 0551.28009, MR 0717502, 10.1016/0022-247X(83)90035-5
Reference: [14] Sivasankara S. A.: Vector integrals and product of vector measures.Univ. Microfilm. Inter., Michigan, 1983.
Reference: [15] Smith W. V., D. H. Tucker: Weak integral convergence theorems and operator measures.Pacific J. Math., 111 (1984), 243-256. Zbl 0569.46021, MR 0732069, 10.2140/pjm.1984.111.243
.

Files

Files Size Format View
CzechMathJ_37-1987-4_7.pdf 1.043Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo