Previous |  Up |  Next

Article

Title: Congruence properties of distributive double $p$-algebras (English)
Author: Adams, Michael E.
Author: Beazer, Rod
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 2
Year: 1991
Pages: 216-231
.
Category: math
.
MSC: 06B10
MSC: 06D15
MSC: 08A30
idZBL: Zbl 0758.06008
idMR: MR1105437
DOI: 10.21136/CMJ.1991.102454
.
Date available: 2008-06-09T15:38:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102454
.
Reference: [1] R. Beazer: The determination congruence on double $p$-algebras.Algebra Universalis 6 (1976), 121-129. Zbl 0353.06002, MR 0419319, 10.1007/BF02485824
Reference: [2] R. Beazer: Pseudocomplemented algebras with Boolean congruence lattices.J. Australian Math. Soc. 26 (1978), 163-168. Zbl 0389.06004, MR 0551487, 10.1017/S1446788700011654
Reference: [3] R. Beazer: Congruence pairs of distributive doubles-algebras with non-empty core.Houston J. Math. 6 (1980), 443-454. MR 0621741
Reference: [4] R. Beazer: Congruence uniform algebras with pseudocomplementation.Studia Sci. Math. Hungar. 20 (1985), 43-48 Zbl 0523.06016, MR 0886003
Reference: [5] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra.Graduate Texts in Mathematics, Springer-Verlag, 1981. Zbl 0478.08001, MR 0648287
Reference: [6] I. Chajda: A Maľcev condition for congruence principal permutable varieties.Algebra Universalis 19 (1984), 337-340. MR 0779151, 10.1007/BF01201102
Reference: [7] G. Grätzer: General Lattice Theory.Birkhäuser Verlag, Basel and Stuttgart, 1978. MR 0504338
Reference: [8] T. Hecht, T. Katriňák: Principal congruences of $p$-algebras and double $p$-algebras.Proc. Amer. Math. Soc. 58 (1976), 25-31. MR 0409293
Reference: [9] T. Katriňák: The structure of distributive double $p$-algebras. Regularity and congruences.Algebra Universalis 3 (1973), 238-246. MR 0332598, 10.1007/BF02945123
Reference: [10] T. Katriňák: Congruence extension property for distributive double $p$-algebras.Algebra Universalis 4 (1974), 273-276. MR 0354475, 10.1007/BF02485737
Reference: [11] T. Katriňák: Congruence pairs on $p$-algebras with a modular frame.Algebra Universalis 8 (1978), 205-220. MR 0465973, 10.1007/BF02485390
Reference: [12] T. Katriňák: Subdirectly irreducible distributive double $p$-algebras.Algebra Universalis 10 (1980), 195-219. MR 0560141, 10.1007/BF02482902
Reference: [13] V. Koubek, J. Sichler: Universal varieties of distributive double $p$-algebras.Glasgow Math. J. 26 (1985), 121-133. Zbl 0574.06009, MR 0798738, 10.1017/S0017089500005887
Reference: [14] R. W. Quackenbush: Varieties with $n$-principal compact congruences.Algebra Universalis 14 (1982), 292-296. Zbl 0493.08006, MR 0654398, 10.1007/BF02483933
Reference: [15] J. C. Varlet: A regular variety of type <2,2, 1, 1,0,0>.Algebra Universalis 2(1972), 218-223. Zbl 0256.06004, MR 0325477
Reference: [16] J. C. Varlet: Large congruences in $p$-algebras and double $p$-algebras.Algebra Universalis 9 (1979), 165-178. Zbl 0436.06009, MR 0523931, 10.1007/BF02488028
Reference: [17] J. C. Varlet: Regularity in double $p$-algebras.Algebra Universalis 18 (1984), 95-105. Zbl 0547.06008, MR 0743459, 10.1007/BF01182250
.

Files

Files Size Format View
CzechMathJ_41-1991-2_3.pdf 1.834Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo