Previous |  Up |  Next

Article

Title: Medial idempotent groupoids. I (English)
Author: Dudek, Józef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 2
Year: 1991
Pages: 249-259
.
Category: math
.
MSC: 20N02
idZBL: Zbl 0738.20061
idMR: MR1105439
DOI: 10.21136/CMJ.1991.102456
.
Date available: 2008-06-09T15:38:35Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102456
.
Reference: [1] B. Csákány: On affine spaces over prime filds.Acta Sci. Math. 37 (1979), 33 - 36. MR 0401609
Reference: [2] B. Csákány: Varieties of affine modules.Acta Sci. Math. 37 (1979), 3-10. MR 0404101
Reference: [3] J. Dudek: A new characterization of groupoids with at most $n$ essentially $n$-агу polynomials.Bull. Soc. Roy. Sci. Liege 48 (1980), 390-392. MR 0614329
Reference: [4] J. Dudek: Some remarks on distributive groupoids.Czechoslovak Math. J. 31 (1981), 58-64. Zbl 0472.20025, MR 0626918
Reference: [5] J. Dudek: On binary polynomials in idempotent commutative groupoids.Fund. Math. 120 (1984), 187-191. Zbl 0555.20035, MR 0755775, 10.4064/fm-120-3-187-191
Reference: [6] J. Dudek: Varieties of idempotent commutative groupoids.Fund. Math. 120 (1984), 193-204. Zbl 0546.20049, MR 0755776, 10.4064/fm-120-3-193-204
Reference: [7] J. Dudek: A polynomial characterization of some idempotent algebras.Acta Sci. Math. 50 (1986), 39-49. MR 0862179
Reference: [8] J. Dudek: On the minimal extension of sequences.Algebra Universalis, 23 (1986), 308-312. Zbl 0627.08001, MR 0903935, 10.1007/BF01230623
Reference: [9] J. Dudek: Polynomials in idempotent commutative groupoids.to appear in Dissertationes Mathematicae, 286. Zbl 0687.08003, MR 1001646
Reference: [10] B. Ganter, H. Werner: Equational classes of Steiner systems.Algebra Universalis, 5 (1975), 125-140. Zbl 0327.08007, MR 0404103, 10.1007/BF02485242
Reference: [11] G. Grätzer: Composition of functions.Proc. Conf. on Universal Algebra, Queen's University (Kingston, Ont. 1970), 1-106. MR 0276161
Reference: [12] G. Grätzer: Universal Algebra.Van Nostrand, Princeton, 2nd ed., 1979. MR 0281674
Reference: [13] G. Grätzer, R. Padmanabhan: On idempotent commutative nonassociative groupoids.Proc. Amer. Math. Soc. 28 (1971), 75-80. MR 0276393, 10.2307/2037760
Reference: [14] J. Ježek, T. Kepka: The lattice of varieties of commutative abelian distributive groupoids.Algebra Universalis 5 (1975), 225-237. MR 0398952, 10.1007/BF02485256
Reference: [15] F. Ostermann, J. Schmidt: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie.J. reine angew. Math. 224 (1966), 44-57. Zbl 0146.16202, MR 0206783, 10.1515/crll.1966.224.44
Reference: [16] J. Plonka: Diagonal algebras.Fund. Math. 58 (1966), 309-321. Zbl 0166.27501, MR 0194378, 10.4064/fm-58-3-309-322
Reference: [17] J. Plonka: On equational classes of abstract algebras defined by regular equations.Fund. Math. 64 (1964), 241-247. MR 0244133, 10.4064/fm-64-2-241-247
Reference: [18] J. Plonka: On the arity of idempotent reducts of groups.Colloq. Math. 21 (1970), 35-37. Zbl 0221.08013, MR 0253968, 10.4064/cm-21-1-35-37
Reference: [19] J. Plonka: On algebras with $n$ distinct $n$-агу operations.Algebra Universalis 1 (1971), 73-79. MR 0286928, 10.1007/BF02944958
Reference: [20] J. Plonka: Subdirectly irreducible groupoids in some vatieties.SMUC 24 (1983), 631-645. MR 0738559
Reference: [21] J. Plonka: On $k$-cyclic groupoids.Math. Japonica 30, No. 3 (1985), 371 - 382. Zbl 0572.08004, MR 0803288
Reference: [22] A. Romanowska, J. Smith: Modal theory - an algebraic approach to order, geometry and convexity.Heldermann-Versag Berlin (1985). Zbl 0553.08001, MR 0788695
.

Files

Files Size Format View
CzechMathJ_41-1991-2_5.pdf 1.043Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo