Previous |  Up |  Next

Article

Title: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces (English)
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 2
Year: 1991
Pages: 288-296
.
Category: math
.
MSC: 46B26
MSC: 46G05
MSC: 47H99
idZBL: Zbl 0768.58005
idMR: MR1105445
DOI: 10.21136/CMJ.1991.102462
.
Date available: 2008-06-09T15:39:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102462
.
Reference: [1] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces.Studia Math. 57 (1976), 147-190. Zbl 0342.46034, MR 0425608, 10.4064/sm-57-2-147-190
Reference: [2] P. S. Kenderov: The set-valued monotone mappings are almost everywhere single-valued.C. R. Acad. Bulgare Sci. 27 (1974), 1173-1175. Zbl 0339.47024, MR 0358447
Reference: [3] P. S. Kenderov: Monotone operators in Asplund spaces.C. R. Acad. Bulgare Sci. 30 (1977), 963-964. Zbl 0377.47036, MR 0463981
Reference: [4] S. V. Konjagin: On the points of the existence and nonunicity of elements of the best approximation.(in Russian), in Teorija funkcij i ee prilozhenija, P. L. Uljanov ed., Izdatelstvo Moskovskovo Universiteta, pp. 38-43, Moscow (1986).
Reference: [5] K. Kuratowski: Topology, Vol. I.(transl.), Academic Press, New York (1966). Zbl 0158.40901, MR 0217751
Reference: [6] R. R. Phelps: Convex functions, monotone operators and differentiability.Lect. Notes in Math., Nr. 1364, Springer-Verlag, (1989). Zbl 0658.46035, MR 0984602
Reference: [7] D. Preiss, L. Zajíček: Fréchet differentiation of convex functions in a Banach space with a separable dual.Proc. Amer. Math. Soc. 91 (1984), 202-204. MR 0740171
Reference: [8] D. Preiss, L. Zajíček: Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions.Proc. 11th Winter School, Suppl. Rend. Circ. Mat. Palermo, Ser. II, No. 3 (1984), 219-223. MR 0744387
Reference: [9] L. Zajíček: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (104) (1979), 340-348. MR 0536060
Reference: [10] L. Zajíček: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czechoslovak Math. J. 33 (108), (1983), 292-308. MR 0699027
Reference: [11] L. Zajíček: Porosity and $\sigma$-porosity.Real Analysis Exchange 13 (1987-88), 314 - 350. MR 0943561
Reference: [12] L. Zajíček: On the points of multivaluedness of metric projections in separable Banach spaces.Comment. Math. Univ. Carolinae 19 (1978), 513-523. MR 0508958
.

Files

Files Size Format View
CzechMathJ_41-1991-2_11.pdf 1.014Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo