Title:
|
On the Scott topology on the set $C(Y,Z)$ of continuous maps (English) |
Author:
|
Papadopoulos, Basil K. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
1991 |
Pages:
|
373-377 |
. |
Category:
|
math |
. |
MSC:
|
06B35 |
MSC:
|
54C35 |
idZBL:
|
Zbl 0789.54022 |
idMR:
|
MR1117790 |
DOI:
|
10.21136/CMJ.1991.102471 |
. |
Date available:
|
2008-06-09T15:40:00Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/102471 |
. |
Reference:
|
[1] Day B., Kelly G. M.: On topological quotient maps preserved by pullbacks or products.Proc. Camb. Phil. Soc. 67, 553-558 (1970). Zbl 0191.20801, MR 0254817, 10.1017/S0305004100045850 |
Reference:
|
[2] Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S.: A Compendium of Continuous Lattices.Springer, Berlin-Heidelberg-New York (1980). Zbl 0452.06001, MR 0614752 |
Reference:
|
[3] Hofmann K. H., Lawson J. D.: The speactral theory of distributive continuous lattices.Trans. Amer. Math. Soc. 246, 285-310 (1978). MR 0515540, 10.1090/S0002-9947-1978-0515540-7 |
Reference:
|
[4] Lambrinos P. Th.: The bounded-open topology on function spaces.Manuscr. Math. 36, 47-66 (1981). Zbl 0459.54011, MR 0637854, 10.1007/BF01174812 |
Reference:
|
[5] Lambrinos P. Th., Papadopoulos B.: The (strong) Isbell topology and (weakly) continuous lattices.Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 191-211, (1985). Zbl 0587.54027, MR 0826002 |
Reference:
|
[6] Schwarz F.: Topological continuous convergence.Manuscr. Math. 49, 79-89 (1984). Zbl 0566.54006, MR 0762788, 10.1007/BF01174872 |
Reference:
|
[7] Schwarz F., Weck S.: Scott topology, Isbell topology and continuous convergence.Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 251-271, (1985). Zbl 0598.54005, MR 0826006 |
Reference:
|
[8] Wyler O.: Convenient categories for topology.Gen. Top. Appl. 3, 225-242 (1983). MR 0324622 |
. |