Previous |  Up |  Next


Title: Elimination on sparse symmetric systems of a special structure (English)
Author: Segethová, Jitka
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 17
Issue: 6
Year: 1972
Pages: 448-460
Summary lang: English
Summary lang: Czech
Category: math
Summary: The problem of solving sparse symmetric linear algebraic systems by elimination is discussed. A brief survey of the techniques used is given. Another approach is introduced in the paper. It is more general than the band matrix approach. However, the matrix is not treated element by element as in the most general approach. The procedure for finding the ordering of rows and columns of a matrix suitable for the considered modification of elimination is given. The examples of matrices reordered by the proposed procedure are shown. ()
MSC: 15A06
MSC: 34-xx
MSC: 65F05
idZBL: Zbl 0259.65035
idMR: MR0312706
DOI: 10.21136/AM.1972.103436
Date available: 2008-05-20T17:54:42Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] G. G. Alway D. W. Martin: An algorithm for reducing the bandwidth of the matrix of symmetric configuration.Computer J. 8 (1965-66), 264-272.
Reference: [2] I. Babuška: Finite element method for domains with corners.Computing 5 (1970), 264-273, MR 0293858, 10.1007/BF02238811
Reference: [3] I. Babuška: The rate of convergence for the finite element method.SIAM J. Numer. Anal. 8 (1971), 304-315. MR 0287715, 10.1137/0708031
Reference: [4] E. Cuthill J. McKee: Reducing the bandwidth of sparse symmetric matrices.1969 Summer National ACM Meeting Proceedings.
Reference: [5] F. G. Gustavson W. M. Liniger R. A. Willoughby: Symbolic generation of an optimal Crout algorithm for sparse systems of linear equations.Proc. of the Symposium on Sparse Matr. and Their Appl., IBM Watson Res. Center, 1968.
Reference: [6] B. M. Irons: A frontal solution program for finite element analysis.Internat. J. for Num. Meth. in Engineering 2 (1970), 5-32. Zbl 0252.73050, 10.1002/nme.1620020104
Reference: [7] S. Parter: The use of linear graphs in Gauss elimination.SIAM Rev. 3 (1961), 119-130. Zbl 0102.11302, MR 0143349, 10.1137/1003021
Reference: [8] D. J. Rose: Symmetric elimination on sparse positive definite systems and the potential flow network problem.PhD thesis, Harvard University, Cambridge, Mass., 1970.
Reference: [9] R. Rosen: Matrix bandwidth minimization.ACM National Conference Proc., Las Vegas, Nevada, 1968.
Reference: [10] J. Segethová: Elimination for sparse symmetric systems of a special structure.Tech. Rep. 70-121, Соmр. Sci. Center, University of Maryland, 1970.
Reference: [11] W. R. Spillers N. Hickerson: Optimal elimination for sparse symmetric systems as a graph problem.Quart. Appl. Math. 26 (1968), 425-432. MR 0233497, 10.1090/qam/233497
Reference: [12] R. P. Tewarson: The Gaussian elimination and sparse systems.Proc. of the Symposium on Sparse Matr. and Their Appl., IBM Watson Res. Center, 1968.


Files Size Format View
AplMat_17-1972-6_3.pdf 1.920Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo