Previous |  Up |  Next

Article

Title: Period doubling bifurcations in a two-box model of the Brusselator (English)
Author: Klíč, Alois
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 5
Year: 1983
Pages: 335-343
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Two theorems about period doubling bifurcations are proved. A special case, where one multiplier of the homogeneous solution is equal to +1 is discussed in the Appendix. (English)
Keyword: invariant vector field
Keyword: Poincaré mapping
Keyword: rotation number
Keyword: period doubling bifurcation
MSC: 34C05
MSC: 34C25
MSC: 37G99
MSC: 37N99
MSC: 58F22
MSC: 92A15
idZBL: Zbl 0531.34030
idMR: MR0712910
DOI: 10.21136/AM.1983.104045
.
Date available: 2008-05-20T18:23:02Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104045
.
Reference: [1] R. Lefevre: Stabilité des Structures Dissipatives.Bull. Classe Sci., Acad. Roy. Belgique, 54, 1968, 712.
Reference: [2] P. Glansdorff I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations.Wiley-Interscience, New York, 1971.
Reference: [3] J. J. Tyson: Some further studies of nonlinear oscillations in chemical systems.J. of Chemical Physics, Vol. 18, No. 9, 1973.
Reference: [4] G. Jetschke: Multiple Stable Steady States and Chemical Hysteresis in a Two-Box Model of the Brusselator.J. Non-Equilib. Thermodyn., Vol. 4, 1979, No. 2. 10.1515/jnet.1979.4.2.93
Reference: [5] V. I. Arnold: Дополнительные главы теории обыкновенных дифференциальных уравнений.Nauka, Moskva, 1978. Zbl 0486.68013, MR 0526218
Reference: [6] W. M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry.Academic Press, New York, 1975. Zbl 0333.53001, MR 0426007
Reference: [7] J. E. Marsden M. McCracken: The Hopf Bifurcation and Its Applications.Springer-Verlag, New York, 1976. MR 0494309
Reference: [8] D. Ruelle: Bifurcation in the presence of a symmetry group.Arch. Rat. Mech. An., 51, 1973, 136-152. MR 0348796, 10.1007/BF00247751
Reference: [9] I. Schreiber M. Marek: Transition to chaos via two-torus in coupled reaction-diffusion cells.Physics Letters, Vol. 91, No. 6, 1982, p. 263. MR 0675223, 10.1016/0375-9601(82)90566-7
Reference: [10] I. Schreiber M. Marek: Strange attractors in coupled reaction-diffusion cells.Physica 5D, 1982, 258-272. MR 0680563
Reference: [11] M. Kawato R. Suzuki: Two Coupled Neural Oscillators as a Model of Circadian Pacemaker.J. Theor. Biology, 1980, 86, 547-575. MR 0610391, 10.1016/0022-5193(80)90352-5
.

Files

Files Size Format View
AplMat_28-1983-5_4.pdf 1.114Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo