Previous |  Up |  Next

Article

Title: Small time-periodic solutions of equations of magnetohydrodynamics as a singularly perturbed problem (English)
Author: Štědrý, Milan
Author: Vejvoda, Otto
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 5
Year: 1983
Pages: 344-356
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: This paper deals with a system of equations describing the motion of viscous electrically conducting incompressible fluid in a bounded three dimensional domain whose boundary is perfectly conducting. The displacement current appearing in Maxwell's equations, $\epsilon E_t$ is not neglected. It is proved that for a small periodic force and small positive #\epsilon# there exists a locally unique periodic solution of the investigated system. For $\epsilon \rightarrow 0$, these solutions are shown to convergeto a solution of the simplified (and usually considered) system of equations of magnetohydrodynamics. (English)
Keyword: electrically conducting
Keyword: bounded three dimensional domain
Keyword: boundary perfectly conducting
Keyword: displacement current
Keyword: Maxwell’s equations
Keyword: small periodic force
Keyword: small positive epsilon
Keyword: locally unique periodic solution
MSC: 35A07
MSC: 35B10
MSC: 35B25
MSC: 76W05
idZBL: Zbl 0524.76101
idMR: MR0712911
DOI: 10.21136/AM.1983.104046
.
Date available: 2008-05-20T18:23:06Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104046
.
Reference: [1] N. G. Van Kampen B. U. Felderhof: Theoretical Methods in Plasma Physics.North-Holland Publishing Company - Amsterdam, 1967.
Reference: [2] O. A. Ladyženskaja V. A. Solonnikov: Solutions of some non-stationary problems of.magnetohydrodynamics for incompressible fluid.(Russian.) Trudy Mat. Inst. V. A. Steklova, 59 (1960), 115-173. MR 0170130
Reference: [3] O. A. Ladyženskaja V. A. Solonnikov: On the principle of linearization and invariant manifolds in problems of magnetohydrodynamics.(Russian.) Zapiski naučnych seminarov LOMI, 38 (1973), 46-93. MR 0377310
Reference: [4] O. A. Ladyženskaja: Mathematical Problems of the Dynamics of Viscous Incompressible Liquid.(Russian.) Nauka, Moskva, 1970. MR 0271559
Reference: [5] A. Milani: On a singular perturbation problem for the linear Maxwell equations.Quaderni di Matematica, Università di Torino, n° 20, 1980, 11-16. Zbl 0478.35010
Reference: [6] A. Milani: On a singular perturbation problem for the Maxwell equations in a multiply connected domain.Rend. Sem. Mat. Univers. Politecn. Torino, 38, 1 (1980), 123-132. Zbl 0464.35006, MR 0608934
Reference: [7] J. A. Shercliff: A Textbook of Magnetohydrodynamics.Pergamon, Oxford 1965. MR 0185961
Reference: [8] L. Stupjalis: A nonstationary problem of magnetohydrodynamics.(Russian.) Zapiski naučnych seminarov LOMI, 52 (1975), 175-217. MR 0464896
Reference: [9] L. Stupjalis: On solvability of an initial-boundary value problem of magnetohydrodynamics.(Russian.) Zapiski naučnych seminarov LOMÍ, 69 (1977), 219-239. MR 0499834
Reference: [10] L. Stupjalis: A nonstationary problem of magnetohydrodynamics in the case of two spatial variables.(Russian.) Trudy Mat. Inst. V. A. Steklova, 147 (1980), 156-168. MR 0573906
.

Files

Files Size Format View
AplMat_28-1983-5_5.pdf 1.365Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo