Previous |  Up |  Next

Article

Title: Finite elements methods for solving viscoelastic thin plates (English)
Author: Růžičková, Helena
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 2
Year: 1984
Pages: 81-103
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by $C^1$-elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion. (English)
Keyword: viscoelastic bending
Keyword: thin plates
Keyword: finite elements in space
Keyword: finite difference in time
Keyword: rate of convergence
MSC: 65N30
MSC: 73F15
MSC: 73K25
MSC: 74D99
MSC: 74E10
MSC: 74K20
MSC: 74S05
idZBL: Zbl 0541.73090
idMR: MR0738495
DOI: 10.21136/AM.1984.104073
.
Date available: 2008-05-20T18:24:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104073
.
Reference: [1] K. Bell: A refined triangular plate bending finite element.Int. J. Numer. Meth. Engng. 1 (1969), 101-122. 10.1002/nme.1620010108
Reference: [2] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540
Reference: [3] J. Brilla: Visco-elastic bending of anisotropic plates.(in Slovak), Stav. Čas. 17 (1969), 153-175.
Reference: [4] J. Brilla: Finite element method for quasiparabolic equations.in Proc. of the 4th symposium on basic problems of numer. math., Plzeň (1978), 25-36. Zbl 0445.73060, MR 0566152
Reference: [5] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [6] V. Girault P.-A. Raviart: Finite Element Approximation of the Navier-Stokes Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0548867
Reference: [7] J. Hřebíček: Numerical analysis of the general biharmonic problem by the finite element method.Apl. mat. 27 (1982), 352-374. MR 0674981
Reference: [8] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Calculation of plane and Space Constructions by the Finite Element Method.(Czech). SNTL, Praha, 1979.
Reference: [9] J. Kratochvíl A. Ženíšek M. Zlámal: A simple algorithm for the stiffness matrix of triangular plate bending finite elements.Int. J. Numer. Meth. Engng. 3 (1971), 553 - 563. 10.1002/nme.1620030409
Reference: [10] J. Nedoma: The finite element solution of parabolic equations.Apl. mat. 23 (1978), 408-438. Zbl 0427.65075, MR 0508545
Reference: [11] S. Turčok: Solution of quasiparabolic differential equations by finite element method.(in Slovak), Thesis, Komenský University Bratislava, (1978).
Reference: [12] M. Zlámal: On the finite element method.Numer. Math. 12 (1968), 394 - 409. MR 0243753, 10.1007/BF02161362
Reference: [13] M. Zlámal: Finite element methods for nonlinear parabolic equations.R.A.I.R.O. Numer. Anal. 11 (1977), 93-107. MR 0502073
Reference: [14] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. MR 0502072
Reference: [15] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method.R.A.I. R. O. Numer. Anal. 15 (1981), 265-286. Zbl 0475.65072, MR 0631681
Reference: [16] A. Ženíšek: Finite element methods for coupled thermoelasticity and coupled consolidation of clay.(To appear in R.A.I.R.O. Numer. Anal. 18 (1984).) MR 0743885
Reference: [17] E. Godlewski A. Puech-Raoult: Équations d'évolution linéaires du second ordre et méthodes multipas.R.A.I.R.O. Numer. Anal. 13 (1979), 329-353. MR 0555383
.

Files

Files Size Format View
AplMat_29-1984-2_2.pdf 2.477Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo