Title:
|
Spectral approximation of positive operators by iteration subspace method (English) |
Author:
|
Pokrzywa, Andrzej |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
29 |
Issue:
|
2 |
Year:
|
1984 |
Pages:
|
104-113 |
Summary lang:
|
English |
Summary lang:
|
Czech |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
Summary:
|
The iteration subspace method for approximating a few points of the spectrum of a positive linear bounded operator is studied. The behaviour of eigenvalues and eigenvectors of the operators $A_n$ arising by this method and their dependence on the initial subspace are described. An application of the Schmidt orthogonalization process for approximate computation of eigenelements of operators $A_n$ is also considered. (English) |
Keyword:
|
positive operators |
Keyword:
|
complex Hilbert space |
Keyword:
|
iteration subspace method |
Keyword:
|
spectrum |
Keyword:
|
eigenvalues |
Keyword:
|
eigenvectors |
Keyword:
|
Schmidt orthogonalization |
MSC:
|
47A10 |
MSC:
|
47B15 |
MSC:
|
65J10 |
idZBL:
|
Zbl 0562.65036 |
idMR:
|
MR0738496 |
DOI:
|
10.21136/AM.1984.104074 |
. |
Date available:
|
2008-05-20T18:24:19Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104074 |
. |
Reference:
|
[1] T. Kato: Perturbation Theory for Linear Operators.Springer-Verlag, Berlin- Heidelberg- New York, 1966. Zbl 0148.12601, MR 0203473 |
Reference:
|
[2] J. Kolomý: Determination of eigenvalues and eigenvectors of self-adjoint operators.Mathematica - Revue d'analyse numerique et de theorie de l'approximation. 22 (45), No 1, 1980, pp. 53-58. MR 0618027 |
Reference:
|
[3] J. Kolomý: On determination of eigenvalues and eigenvectors of self-adjoint operators.Apl. Mat. 26 (1981), pp. 161-170. MR 0615603 |
Reference:
|
[4] B. N. Parlett: The Symmetric Eigenvalue Problem.Prentice-Hall, Inc., Englewood Cliffs, 1980. Zbl 0431.65017, MR 0570116 |
Reference:
|
[5] J. H. Wilkinson: The Algebraic Eigenvalue Problem.Clarendon Press, Oxford, 1965. Zbl 0258.65037, MR 0184422 |
. |