Previous |  Up |  Next


Title: Spectral approximation of positive operators by iteration subspace method (English)
Author: Pokrzywa, Andrzej
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 2
Year: 1984
Pages: 104-113
Summary lang: English
Summary lang: Czech
Summary lang: Russian
Category: math
Summary: The iteration subspace method for approximating a few points of the spectrum of a positive linear bounded operator is studied. The behaviour of eigenvalues and eigenvectors of the operators $A_n$ arising by this method and their dependence on the initial subspace are described. An application of the Schmidt orthogonalization process for approximate computation of eigenelements of operators $A_n$ is also considered. (English)
Keyword: positive operators
Keyword: complex Hilbert space
Keyword: iteration subspace method
Keyword: spectrum
Keyword: eigenvalues
Keyword: eigenvectors
Keyword: Schmidt orthogonalization
MSC: 47A10
MSC: 47B15
MSC: 65J10
idZBL: Zbl 0562.65036
idMR: MR0738496
DOI: 10.21136/AM.1984.104074
Date available: 2008-05-20T18:24:19Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] T. Kato: Perturbation Theory for Linear Operators.Springer-Verlag, Berlin- Heidelberg- New York, 1966. Zbl 0148.12601, MR 0203473
Reference: [2] J. Kolomý: Determination of eigenvalues and eigenvectors of self-adjoint operators.Mathematica - Revue d'analyse numerique et de theorie de l'approximation. 22 (45), No 1, 1980, pp. 53-58. MR 0618027
Reference: [3] J. Kolomý: On determination of eigenvalues and eigenvectors of self-adjoint operators.Apl. Mat. 26 (1981), pp. 161-170. MR 0615603
Reference: [4] B. N. Parlett: The Symmetric Eigenvalue Problem.Prentice-Hall, Inc., Englewood Cliffs, 1980. Zbl 0431.65017, MR 0570116
Reference: [5] J. H. Wilkinson: The Algebraic Eigenvalue Problem.Clarendon Press, Oxford, 1965. Zbl 0258.65037, MR 0184422


Files Size Format View
AplMat_29-1984-2_3.pdf 1.545Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo