Previous |  Up |  Next

Article

Title: Investigation of periodicity for dependent observations (English)
Author: Cipra, Tomáš
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 2
Year: 1984
Pages: 134-142
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: It is proved that Hannan's procedure for statistical test of periodicity in the case of time series with dependent observations can be combined with Siegel's improvement of the classical Fischer's test of periodicity. Simulations performed in the paper show that this combination can increase the power of Hannan's test when at least two periodicities are present in the time series with dependent observations. (English)
Keyword: test for periodicity
Keyword: time series
Keyword: dependent observations
MSC: 62M02
MSC: 62M07
MSC: 62M10
MSC: 62M15
idZBL: Zbl 0541.62070
idMR: MR0738498
DOI: 10.21136/AM.1984.104076
.
Date available: 2008-05-20T18:24:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104076
.
Reference: [1] J. Anděl: Statistical Analysis of Time Series.SNTL, Prague, 1976 (in Czech).
Reference: [2] E. Bølviken: New tests of significance in periodogram analysis.Scand. J. Statist. 10 (1983), 1-10. MR 0711329
Reference: [3] T. Cipra: Improvement of Fisher's test of periodicity.Apl. mat. 28 (1983), 186- 193. Zbl 0528.62075
Reference: [4] E. Damsleth E. Spjøtvoll: Estimation of trigonometric component in times series.Journal of the American Statistical Association 77 (1982), 381- 387. 10.1080/01621459.1982.10477820
Reference: [5] R. A. Fisher: Tests of significance in harmonic analysis.Proc. Roy. Soc. A 125 (1929), 54-59.
Reference: [6] R. A. Fisher: The sampling distribution of some statistics obtained from non-linear equations.Annals of Eugenics 9 (1939), 238-249. MR 0001499, 10.1111/j.1469-1809.1939.tb02211.x
Reference: [7] R. A. Fisher: On the similarity of the distribution found for the test of significance in harmonic analysis and in Steven's problem in geometrical probability.Annals of Eugenics 10 (1940), 14-17. MR 0002079, 10.1111/j.1469-1809.1940.tb02233.x
Reference: [8] E. J. Hannan: Time Series Analysis.Methuen, London, 1960. Zbl 0095.13204, MR 0114281
Reference: [9] E. J. Hannan: Testing for a jump in the spectral function.J. R. Statist. Soc. B 23 (1961), 394-404. Zbl 0109.12801, MR 0137271
Reference: [10] J. B. Mac Neill: Tests for periodic components in multiple time series.Biometrika 61 (1974), 57-70. MR 0378317, 10.1093/biomet/61.1.57
Reference: [11] D. F. Nicholls: Estimation of the spectral density function when testing for a jump in the spectrum.Aust. J. Statist. 9 (1967), 103-108. MR 0228133, 10.1111/j.1467-842X.1967.tb00188.x
Reference: [12] M. B. Priestley: Spectral Analysis and Time Series.Academic Press, London-New York, 1981. Zbl 0537.62075
Reference: [13] A. F. Siegel: The noncentral chi squared distribution with zero degree of freedom and testing for uniformity.Biometrika 66 (1979), 381-386. MR 0548209, 10.1093/biomet/66.2.381
Reference: [14] A. F. Siegel: Testing for periodicity in a time series.Journal of the American Statistical Association 75 (1980), 345-348. Zbl 0462.62069, 10.1080/01621459.1980.10477474
Reference: [15] A. M. Walker: Some asymptotic results for the periodogram of a stationary time series.J. Aust. Math. Soc. 5 (1965), 107-128. Zbl 0128.38701, MR 0177457, 10.1017/S1446788700025921
Reference: [16] P. Whittle: Hypothesis Testing in Time Series Analysis.Almqvist and Wiksell, Uppsala, 1951. Zbl 0045.41301, MR 0040634
Reference: [17] P. Whittle: Test of fit in time series.Biometrika 39 (1952), 309-318. MR 0052743, 10.1093/biomet/39.3-4.309
Reference: [18] P. Whittle: The statistical analysis of a seiche record.Sears Foundation Journal of Marine Research 13 (1954), 76-100. MR 0078600
.

Files

Files Size Format View
AplMat_29-1984-2_5.pdf 1.439Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo