Previous |  Up |  Next

Article

Title: Convergence of extrapolation coefficients (English)
Author: Zítko, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 2
Year: 1984
Pages: 114-133
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Let $x_{k+1}=Tx_k+b$ be an iterative process for solving the operator equation $x=Tx+b$ in Hilbert space $X$. Let the sequence $\{x_k\}^\infty _{k=o}$ formed by the above described iterative process be convergent for some initial approximation $x_o$ with a limit $x^*=Tx^*+b$. For given $l>1,m_0,m_1,\dots ,m_l$ let us define a new sequence $\{y_k\}^\infty _{k=m_1}$ by the formula $y_k=\alpha^{(k)}_0x_k+\alpha^{(k)}_1x_{k-m_1}+\ldots +\alpha^{(k)}_lx_{k-m_l}$, where $\alpha^{(k)}_i$ are obtained by solving a minimization problem for a given functional. In this paper convergence properties of $\alpha^{(k)}_i$ are investigated and on the basis of the results thus obtainded it is proved that $\lim_{k\rightarrow \infty} \left\|x^*-y_k\right\|/\left\|x^*-x_k\right\|^p=0$ for some $p\geq 1$. (English)
Keyword: iterative methods
Keyword: convergence acceleration
Keyword: Hilbert space
MSC: 47A50
MSC: 65J10
idZBL: Zbl 0577.65044
idMR: MR0738497
DOI: 10.21136/AM.1984.104075
.
Date available: 2008-05-20T18:24:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104075
.
Reference: [1] J. Zítko: Improving the convergence of iterative methods.Apl. Mat. 28 (1983), 215-229. MR 0701740
Reference: [2] J. Zítko: Kellogg's iterations for general complex matrix.Apl. Mat. 19 (1974), 342-365. Zbl 0315.65025, MR 0368406
Reference: [3] G. Maess: Iterative Lösung linear Gleichungssysteme.Deutsche Akademie der Naturforscher Leopoldina Halle (Saale), 1979. MR 0558164
Reference: [4] G. Maess: Extrapolation bei Iterationsverfahren.ZAMM 56, 121-122 (1976). MR 0426417, 10.1002/zamm.19760560210
Reference: [5] I. Marek J. Zítko: Ljusternik Acceleration and the Extrapolated S.O.R. Method.Apl. Mat. 22 (1977), 116-133. MR 0431667
Reference: [6] I. Marek: On a method of accelerating the convergence of iterative processes.Journal Соmр. Math. and Math. Phys. 2 (1962), N2, 963-971 (Russian). MR 0152112
Reference: [7] I. Marek: On Ljusternik's method of improving the convergence of nonlinear iterative sequences.Comment. Math. Univ. Carol, 6 (1965), N3, 371-380. MR 0196901
Reference: [8] A. E. Taylor: Introduction to Functional Analysis.J. Wiley Publ. New York 1958. Zbl 0081.10202, MR 0098966
.

Files

Files Size Format View
AplMat_29-1984-2_4.pdf 2.237Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo