Previous |  Up |  Next

Article

Title: Note on type II counter problem (English)
Author: Dvurečenskij, Anatolij
Author: Ososkov, Genadij A.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 4
Year: 1984
Pages: 237-249
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of $m$ types of particles. (English)
Keyword: counter theory
Keyword: Laplace transform
Keyword: generating function
Keyword: dead time
MSC: 60E99
MSC: 60K30
MSC: 60K99
idZBL: Zbl 0545.60094
idMR: MR0754076
DOI: 10.21136/AM.1984.104092
.
Date available: 2008-05-20T18:25:07Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104092
.
Reference: [1] Л. Г. Афанасьева И. В. Михайлова: Предельное распределение периода занятости в системах $G /D /\infty$ и $M /G /\infty$ в условиях большой загруски.в. кн. Материалы Всесоюзного симпозиума по статистике случайных процессов, изд. Киевского гос. ун-та, Киев (1973), 12-15.
Reference: [2] Л. Г. Афанасьева И. В. Михайлова: О восстановлениии характеристик некоторых систем массового обслуживания по выходящему потоку.в кн. Труды мат. фак. ВГУ, вып. 9, изд. Воронежского гос. ун-та, Воронеж (1973), 132-138. Zbl 1221.53041, MR 0436667
Reference: [3] Л. Г. Афанасьева И. В. Михайлова: О числе требований, обслуженных за период занятости.Изв. АН СССР, Тех. Кибернетика, (1978), 88-96. Zbl 1234.93001
Reference: [4] G. E. Albert L. Nelson: Contribution to the statistical theory of counter data.Ann. Math. Stat., 24 (1953), 9-22. MR 0053447
Reference: [5] R. Barlow: Applications of semi-Markov processes to counter problems.in: Studies in applied probability and management science, Stanford Univ. Press, Stanford, Calif., (1962), 34-62. MR 0139205
Reference: [6] M. Berman: The covariance of two type II counters.J. Appl. Probab., 18 (1981), 782-787. Zbl 0467.60053, MR 0621246
Reference: [7] А. Цвуреченский, др.: Об оценке плотности следов в трековых камерах.ОИЯИ, 5-81-362, Дубна (1981) 1-14. Zbl 1167.00300
Reference: [8] А. Двуреченский, др.: О применении систем массового обслуживания с бесконечным числом каналов к некоторым задачам физике энергий.ОИЯИ, P 5-82-682 (1982). 1 - 4. Zbl 1164.20358
Reference: [9] A. Dvurečenskij G. A. Ososkov: On a busy period of discretized $GI /GI /\infty$ queue.JINR, E5-82-855, Dubna (1982).
Reference: [10] В. Феллер: Введение в теорию вероятностей и ее приложения.T. I., ,,Мир", Москва (1967). Zbl 1103.35360
Reference: [11] В. И. Голъданский А. В. Куцешо, M И. Подгорецкий: Статистика отсчетов при регистрации ядерных частиц.,,Физматгиз", Москва (1959). Zbl 1234.81002
Reference: [12] R. L. Glückstern: Determination of bubble density.Nuclear. Instr. Meth. 45 (1966), 166-172.
Reference: [13] А. И. Маркушевич: Краткий курс теории аналитических функций.,,Наука", Москва (1978). Zbl 1130.91322
Reference: [14] F. Pollaczek: Sur la théorie stochastique des compteurs électroniques.C. R. Acad. Sci. Paris, 238 (1954), 322-324. Zbl 0055.12601, MR 0059508
Reference: [15] R. Pyke: On renewal processes related to Type I and Type II counter models.Ann. Math. Stat., 29 (1958), 737-754. Zbl 0086.33702, MR 0099089, 10.1214/aoms/1177706533
Reference: [16] R. Pyke: Markov renewal processes of zero order and their application to counter theory.in: Studies in Applied Probability and Management Science, Stanford Univ. Press, Stanford, Calif., (1962), 173-183. Zbl 0116.36402, MR 0133889
Reference: [17] G. Sankaranarayanan: Limit distributions in the theory of counters.Ann. Math. Stat., 32 (1961), 1271-1285. Correction, ibid 33 (1962), 1466. Zbl 0111.33103, MR 0137175, 10.1214/aoms/1177704866
Reference: [18] G. Sankaranarayanan: Theory of particle counters.Math. Student, 32 (1964), 29-38. MR 0184307
Reference: [19] G. Sankaranarayanan C. Suyambulingom: Distribution of the maximum of the number of impulses at any instant in a type II counter in a given interval of time.Metrika, 18 (1971/72) 227-233. Correction, ibid 20 (1973), 245. MR 0413307, 10.1007/BF02614253
Reference: [20] R. M. Sekkapan: A problem in type II counter.Calcutta Statis. Assoc. Bull., 15 (1966), 169-174. MR 0217904, 10.1177/0008068319660405
Reference: [21] W. L. Smith: Renewal theory and its ramifications.J. Roy. Stat. Soc. B, 20 (1958), 243 - 284. Zbl 0091.30101, MR 0099090
Reference: [22] L. Takács: On processes of happenings generated by means of a Poisson process.Acta. Math. Acad. Sci. Hungar., 6 (1955), 81-99. MR 0070887, 10.1007/BF02021269
Reference: [23] L. Takács: On a probability problem arising in the theory of counters.Proc. Cambr. Phil. Soc., 52 (1956), 488-498. MR 0081585, 10.1017/S0305004100031480
Reference: [24] L. Takács: On the sequence of events, selected by a counter from a recurrent process of events.Teor. Verojat. i. Prim. 1 (1956), 90-102. MR 0084219
Reference: [25] L. Takács: On some probability problems concerning the theory of counters.Acta Math. Sci. Acad. Hungar., 8 (1957), 127-138. MR 0090168, 10.1007/BF02025237
Reference: [26] L. Takács: On a probability problem in the theory of counters.Ann. Math. Stat., 29 (1958), 1257-1263. MR 0099717, 10.1214/aoms/1177706457
Reference: [27] L. Takács: On a coincidence problem concerning particle counters.Ann. Math. Stat., 32 (1961), 739-756. MR 0133893, 10.1214/aoms/1177704969
Reference: [28] L. Takács: Introduction to the theory of queues.Oxford Univ. Prass 1962. MR 0133880
Reference: [29] L. Takács: Queues with infinitely many servers.RAIRO Recherche Opérat., 14 (1980), 109-113. MR 0575658
.

Files

Files Size Format View
AplMat_29-1984-4_2.pdf 1.871Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo