Previous |  Up |  Next

Article

Title: A convergent nonlinear splitting via orthogonal projection (English)
Author: Mandel, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 4
Year: 1984
Pages: 250-257
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: We study the convergence of the iterations in a Hilbert space $V,x_{k+1}=W(P)x_k, W(P)z=w=T(Pw+(I-P)z)$, where $T$ maps $V$ into itself and $P$ is a linear projection operator. The iterations converge to the unique fixed point of $T$, if the operator $W(P)$ is continuous and the Lipschitz constant $\left\|(I-P)W(P)\right\|<1$. If an operator $W(P_1)$ satisfies these assumptions and $P_2$ is an orthogonal projection such that $P_1P_2=P_2P_1=P_1$, then the operator $W(P_2)$ is defined and continuous in $V$ and satisfies $\left\|(I-P_2)W(P_2)\right\|\leq \left\|(I-P_1)W(P_1)\right\|$. (English)
Keyword: convergent nonlinear splitting
Keyword: orthogonal projection
Keyword: iterations
Keyword: Hilbert space
Keyword: fixed point
MSC: 47H10
MSC: 47H17
MSC: 47J25
MSC: 65J15
idZBL: Zbl 0613.65060
idMR: MR0754077
DOI: 10.21136/AM.1984.104093
.
Date available: 2008-05-20T18:25:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104093
.
Reference: [1] M. Fiedler V. Pták: On aggregation in matrix theory and its applications to numerical inverting of large matrices.Bull. Acad. Pol. Sci. Math. Astr. Phys. 11 (1963) 757-759. MR 0166911
Reference: [2] N. S. Kurpeľ: Projection-iterative Methods of Solution of Operator Equations.(Russian). Naukova Dumka, Kiev 1968. MR 0254691
Reference: [3] D. P. Looze N. R. Sandell, Jr.: Analysis of decomposition algorithms via nonlinear splitting functions.J. Optim. Theory Appl. 34 (1981) 371-382. MR 0628203, 10.1007/BF00934678
Reference: [4] A. Ju. Lučka: Projection-iterative Methods of Solution of Differential and Integral Equations.(Russian). Naukova Dumka, Kiev 1980. MR 0598991
Reference: [5] A. Ju. Lučka: Convergence criteria of the projection-iterative method for nonlinear equations.(Russian). Preprint 82.24, Institute of Mathematics AN Ukrain. SSR, Kiev 1982.
Reference: [6] J. Mandel: Convergence of some two-level iterative methods.(Czech). PhD Thesis, Charles University, Prague 1982.
Reference: [7] J. Mandel: On some two-level iterative methods.In: Defect Correction - Theory and Applications (K. Böhmer, H. J. Stetter. editors), Computing Supplementum Vol. 5, Springer-Verlag, Wien, to appear. Zbl 0552.65049, MR 0782691
Reference: [8] J. Mandel B. Sekerka: A local convergence proof for the iterative aggregation method.Linear Algebra Appl. 51 (1983), 163-172. MR 0699731
Reference: [9] O. Pokorná I. Prágerová: Approximate matrix invertion by aggregation.In: Numerical Methods of Approximation Theory, Vol. 6 (L. Collatz, G. Meinhardus, H. Werner, editors), Birghäuser Verlag, Basel-Boston-Stuttgart 1982.
Reference: [10] A. E. Taylor: Introduction to Functional Analysis.J. Wiley Publ., New York 1958. Zbl 0081.10202, MR 0098966
Reference: [11] R. S. Varga: Matrix Iterative Analysis.Prentice Hall Inc., Englewood Cliffs, New Jersey 1962. MR 0158502
Reference: [12] T. Wazewski: Sur une procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison.Bull. Acad. Pol. Sci. Math. Astr. Phys. 8 (1960) 47-52. MR 0126109
.

Files

Files Size Format View
AplMat_29-1984-4_3.pdf 931.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo