Previous |  Up |  Next


convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point
We study the convergence of the iterations in a Hilbert space $V,x_{k+1}=W(P)x_k, W(P)z=w=T(Pw+(I-P)z)$, where $T$ maps $V$ into itself and $P$ is a linear projection operator. The iterations converge to the unique fixed point of $T$, if the operator $W(P)$ is continuous and the Lipschitz constant $\left\|(I-P)W(P)\right\|<1$. If an operator $W(P_1)$ satisfies these assumptions and $P_2$ is an orthogonal projection such that $P_1P_2=P_2P_1=P_1$, then the operator $W(P_2)$ is defined and continuous in $V$ and satisfies $\left\|(I-P_2)W(P_2)\right\|\leq \left\|(I-P_1)W(P_1)\right\|$.
[1] M. Fiedler V. Pták: On aggregation in matrix theory and its applications to numerical inverting of large matrices. Bull. Acad. Pol. Sci. Math. Astr. Phys. 11 (1963) 757-759. MR 0166911
[2] N. S. Kurpeľ: Projection-iterative Methods of Solution of Operator Equations. (Russian). Naukova Dumka, Kiev 1968. MR 0254691
[3] D. P. Looze N. R. Sandell, Jr.: Analysis of decomposition algorithms via nonlinear splitting functions. J. Optim. Theory Appl. 34 (1981) 371-382. DOI 10.1007/BF00934678 | MR 0628203
[4] A. Ju. Lučka: Projection-iterative Methods of Solution of Differential and Integral Equations. (Russian). Naukova Dumka, Kiev 1980. MR 0598991
[5] A. Ju. Lučka: Convergence criteria of the projection-iterative method for nonlinear equations. (Russian). Preprint 82.24, Institute of Mathematics AN Ukrain. SSR, Kiev 1982.
[6] J. Mandel: Convergence of some two-level iterative methods. (Czech). PhD Thesis, Charles University, Prague 1982.
[7] J. Mandel: On some two-level iterative methods. In: Defect Correction - Theory and Applications (K. Böhmer, H. J. Stetter. editors), Computing Supplementum Vol. 5, Springer-Verlag, Wien, to appear. MR 0782691 | Zbl 0552.65049
[8] J. Mandel B. Sekerka: A local convergence proof for the iterative aggregation method. Linear Algebra Appl. 51 (1983), 163-172. MR 0699731
[9] O. Pokorná I. Prágerová: Approximate matrix invertion by aggregation. In: Numerical Methods of Approximation Theory, Vol. 6 (L. Collatz, G. Meinhardus, H. Werner, editors), Birghäuser Verlag, Basel-Boston-Stuttgart 1982.
[10] A. E. Taylor: Introduction to Functional Analysis. J. Wiley Publ., New York 1958. MR 0098966 | Zbl 0081.10202
[11] R. S. Varga: Matrix Iterative Analysis. Prentice Hall Inc., Englewood Cliffs, New Jersey 1962. MR 0158502
[12] T. Wazewski: Sur une procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison. Bull. Acad. Pol. Sci. Math. Astr. Phys. 8 (1960) 47-52. MR 0126109
Partner of
EuDML logo