Previous |  Up |  Next

Article

Title: Convergence of $L_p$-norms of a matrix (English)
Author: Stavinoha, Pavel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 5
Year: 1985
Pages: 351-360
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: a recurrence relation for computing the $L_p$-norms of an Hermitian matrix is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the $L_p$-norms for the approximation of the spectral radius of an Hermitian matrix an a priori and a posteriori bounds for the error are obtained. Some properties of the a posteriori bound are discussed. (English)
Keyword: convergence
Keyword: $L_p$-norms
Keyword: Hermitian matrix
Keyword: spectral radius
MSC: 15A12
MSC: 15A42
MSC: 15A60
MSC: 65F15
MSC: 65F35
idZBL: Zbl 0609.65024
idMR: MR0806832
DOI: 10.21136/AM.1985.104162
.
Date available: 2008-05-20T18:28:19Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104162
.
Reference: [1] E. F. Beckenbach, R. Bellman: Inequalities.Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983. Zbl 0513.26003, MR 0192009
Reference: [2] R. Bellman: Selective computation - V: The largest characteristic root of a matrix.Nonlinear Anal. Theory, Meth. and Appl., 3(1979), 905-908. Zbl 0495.65012, MR 0548962, 10.1016/0362-546X(79)90058-0
Reference: [3] R. T. Gregory, D. L. Karney: A collection of matrices for testing computational algorithms.J. Wiley & Sons., New York, 1969. MR 0253538
Reference: [4] L. Gross: Existence and uniqueness of physical ground states.J. Functional Analysis, 10 (1972) 52-109. Zbl 0237.47012, MR 0339722, 10.1016/0022-1236(72)90057-2
Reference: [5] R. A. Kunze. : $L_p$ Fourier transforms on locally compact unimodular groups.Trans. Amer. Math. Soc., 89 (1958), 519-540. MR 0100235
Reference: [6] J. Peetre, G. Sparr: Interpolation and non-commutative integration.Ann. of Math. Рurа Appl., 104 (1975), 187-207. Zbl 0309.46031, MR 0473869, 10.1007/BF02417016
Reference: [7] I. E. Segal: A non-commutative extension of abstract integration.Ann. of Math., 57 (1953), 401-457, correction 58 (1953), 595-596. Zbl 0051.34202, MR 0054864
Reference: [8] P. Stavinoha: On limits of $L_p$-norms of linear operators.Czechoslovak Math. J. 32 (1982), 474-480. Zbl 0511.46062, MR 0669788
.

Files

Files Size Format View
AplMat_30-1985-5_5.pdf 1.432Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo