Previous |  Up |  Next

Article

Title: Relative conditional expectations on a logic (English)
Author: Nánásiová, Oľga
Author: Pulmannová, Sylvia
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 5
Year: 1985
Pages: 332-350
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: In this paper, the authors introduce the notion of conditional expectation of an observable $x$ on a logic with respect to a sublogic, in a state $m$, relative to an element $a$ of the logic. This conditional expectation is an analogue of the expectation of an integrable function on a probability space. (English)
Keyword: conditional expectation of an observable
Keyword: partially compatible
MSC: 03G12
MSC: 06C15
MSC: 60A99
MSC: 81B10
MSC: 81P20
idZBL: Zbl 0585.60003
idMR: MR0806831
DOI: 10.21136/AM.1985.104161
.
Date available: 2008-05-20T18:28:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104161
.
Reference: [1] V. S. Varadarajan: Geometry of Quantum Theory.Vol. 1, Princeton, New Yersey, Van Nostrand Reinhold 1968. Zbl 0155.56802, MR 0471674
Reference: [2] S. Pulmannová: Compatibility and partial compatibility in quantum logics.Ann. Inst. H. Poincaré XXXIV (1981), 391-403. MR 0625170
Reference: [3] G. Brims G. Kalmbach: Some remarks on free orthomodular lattices.Proc. Univ. of Houston, Lattice Theory Conf. Houston (1973).
Reference: [4] N. Zierler: Axioms for non-relativistic quantum mechanics.Рас. J. Math. II, (1961), 1151-1169. Zbl 0138.44503, MR 0140972
Reference: [5] S. P. Gudder J. Zerbe: Generalized monotone convergence and Randon-Nikodym theorems.J. Math Phys. 22 (1981) 2553-2561. MR 0640666, 10.1063/1.524832
Reference: [6] A. Dvurečenskij S. Pulmannová: On the sum of observables in a logic.Math. Slovaca, 30, (1980), 393-399. MR 0595300
Reference: [7] H. Mullikin S. P. Gudder: Measure theoretic convergences of observables and operators.J. Math. Phys. 14, (1973), 234-242. MR 0334747, 10.1063/1.1666301
Reference: [8] Z. Šidák: On relations between strict sense and wide sense conditional expectations.Teorija verojatnostej i jej o primenenija, II. 2., (1957), 283 - 288. MR 0092249
Reference: [9] S. P. Gudder: Uniqueness and existence properties of bounded observables.Pacific. J. Math. 15, (1966), 81-93, 588-589. Zbl 0149.23603, MR 0201146
Reference: [10] P. Pták V. Rogalewicz: Regularly full logics and the uniqueness problem for observables.Ann. Inst. H. Poincaré 37, (1983), 69 - 74. MR 0700701
Reference: [11] Moy, Shu-Teh Chen: Characterization of conditional expectations as a transformation of function spaces.Pacif. J. Math. 4, (1954), 47-69. MR 0060750, 10.2140/pjm.1954.4.47
Reference: [12] R. R. Bahadur: Measurable subspaces and subalgebras.Proc. Amer. Math. Soc. 6, (1955) 565-570. Zbl 0066.11003, MR 0072446, 10.1090/S0002-9939-1955-0072446-8
Reference: [13] S. P. Gudder: Joint distributions of observables.J. Math. Mech. 18, (1968), 269-302. Zbl 0241.60092, MR 0232582
Reference: [14] J. M. Jauch: The quantum probability calculus.Synthese 29, (1974), 331 - 356. Zbl 0342.60004, 10.1007/BF00484955
Reference: [15] A. Dvurečenskij S. Pulmannová: Connection between joint distributions and compatibility.Rep. Math. Phys., 19, (1984), 349-359. MR 0745430, 10.1016/0034-4877(84)90007-7
Reference: [16] S. P. Gudder J. P. Marchand: Noncommutative probability on von Neumann algebras.J. Math. Phys. 13, (1972), 799-806. MR 0302108, 10.1063/1.1666054
Reference: [17] H. Umegaki: Conditional expectation in an operator algebra I.Tohoku Math. J. 6, (1954), 177-181. MR 0068751, 10.2748/tmj/1178245177
Reference: [18] M. Nakamura T. Turumaru: Expectations on an operator algebra.Tohoku Math. J. 6, (1954), 182-188. MR 0068750, 10.2748/tmj/1178245178
Reference: [19] M. Takesaki: Conditional expectations on von Neumann algebras.J. Funct. Anal. 9, (1972), 306-321. MR 0303307, 10.1016/0022-1236(72)90004-3
Reference: [20] H. Cycon K. E. Hellwig: Conditional expectations in generalized probability theory.J. Math. Phys. 18, (1977), 1154-1161. MR 0436828, 10.1063/1.523385
Reference: [21] S. P. Gudder J. P. Marchand: Conditional expectations on von Neumann algebras. A new approach.Rep. Math. Phys. 12, (1977), 317-329. MR 0493386, 10.1016/0034-4877(77)90030-1
.

Files

Files Size Format View
AplMat_30-1985-5_4.pdf 2.582Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo