Previous |  Up |  Next

Article

Title: On non-ergodic versions of limit theorems (English)
Author: Volný, Dalibor
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 5
Year: 1989
Pages: 351-363
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds. (English)
Keyword: central limit theorem for martingale differences
Keyword: ergodic decomposition
Keyword: invariance principle
Keyword: invariant measure
Keyword: law of iterated logarithm
Keyword: strictly stationary sequence
MSC: 28D05
MSC: 60B10
MSC: 60F05
MSC: 60F17
MSC: 60G10
MSC: 60G40
idZBL: Zbl 0707.60027
idMR: MR1014076
DOI: 10.21136/AM.1989.104363
.
Date available: 2008-05-20T18:37:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104363
.
Reference: [1] P. Billingsley: Ergodic Theory and Information.Wiley, New York, (1964). MR 0192027
Reference: [2] P. Billingsley: The Lindenberg-Lévy theorem for martingales.Proc. Amer. Math. Soc. 12 (1961), 788-792. MR 0126871
Reference: [3] G. K. Eagleson: On Gordin's central limit theorem for stationary processes.J. Appl. Probab. 12 (1975), 176-179. Zbl 0306.60017, MR 0383501, 10.2307/3212425
Reference: [4] C. G. Esseen S. Janson: On moment conditions for normed sums of independent variables and martingale differences.Stoch. Proc. and their Appl. 19 (1985). 173-182. MR 0780729, 10.1016/0304-4149(85)90048-1
Reference: [5] M. I. Gordin: The central limit theorem for stationary processes.Soviet Math. Dokl. 10 (1969), 1174-1176. Zbl 0212.50005, MR 0251785
Reference: [6] M. I. Gordin: Abstracts of Communications, T.1: A-K.International conference on probability theory (Vilnius, 1973).
Reference: [7] P. Hall C. C. Heyde: Martingale Limit Theory and its Applications.Academic Press, New York, 1980. MR 0624435
Reference: [8] C. C. Heyde: On central limit and iterated logarithm supplements to the martingale convergence theorem.J. Appl. Probab. 14 (1977), 758-775. Zbl 0385.60033, MR 0517475, 10.2307/3213349
Reference: [9] C. C. Heyde: On the central limit theorem for stationary processes.Z. Wahrsch. Verw. Gebiete 30 (1974), 315-320. Zbl 0297.60014, MR 0372955, 10.1007/BF00532619
Reference: [10] C. C. Heyde: On the central limit theorem and iterated logarithm law for stationary processes.Bull. Austral. Math. Soc. 12 (1975), 1-8. Zbl 0287.60035, MR 0372954, 10.1017/S0004972700023583
Reference: [11] I. A. Ibragimov: A central limit theorem for a class of dependent random variables.Theory Probab. Appl. 8 (1963), 83-89. Zbl 0123.36103, MR 0151997
Reference: [12] M. Loève: Probability Theory.Van Nostrand, New York, 1955. MR 0203748
Reference: [13] J. C. Oxtoby: Ergodic sets.Bull. Amer. Math. Soc. 58 (1952), 116-136. Zbl 0046.11504, MR 0047262, 10.1090/S0002-9904-1952-09580-X
Reference: [14] D. Volný: The central limit problem for strictly stationary sequences.Ph. D. Thesis, Mathematical Inst. Charles University, Praha, 1984.
Reference: [15] D. Volný: Approximation of stationary processes and the central limit problem.LN in Mathematics 1299 (Proceedings of the Japan- USSR Symposium on Probability Theory, Kyoto 1986) 532-540. MR 0936028
Reference: [16] D. Volný: Martingale decompositions of stationary processes.Yokohama Math. J. 35 (1987), 113-121. MR 0928378
Reference: [17] D. Volný: Counterexamples to the central limit problem for stationary dependent random variables.Yokohama Math. J. 36 (1988), 69-78. MR 0978876
Reference: [18] D. Volný: On the invariance principle and functional law of iterated logarithm for non ergodic processes.Yokohama Math. J. 35 (1987), 137-141. MR 0928380
Reference: [19] D. Volný: A non ergodic version of Gordin's CLT for integrable stationary processes.Comment. Math. Univ. Carolinae 28, 3 (1987), 419-425. MR 0912569
Reference: [20] K. Winkelbauer: .personal communication. Zbl 0584.94013
.

Files

Files Size Format View
AplMat_34-1989-5_2.pdf 1.543Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo