Previous |  Up |  Next

Article

Title: On necessary optimality conditions in a class of optimization problems (English)
Author: Outrata, Jiří V.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 6
Year: 1989
Pages: 466-474
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: In the paper necessary optimality conditions are derived for the minimization of a locally Lipschitz objective with respect to the consttraints $x \in S, 0 \in F(x)$, where $S$ is a closed set and $F$ is a set-valued map. No convexity requirements are imposed on $F$. The conditions are applied to a generalized mathematical programming problem and to an abstract finite-dimensional optimal control problem. (English)
Keyword: Clarke regular graph
Keyword: necessary conditions
Keyword: tangent cone
Keyword: locally Lipschitz objective function
Keyword: set-valued map
Keyword: Clarke normal cone
Keyword: generalized gradient
Keyword: contingent cone
MSC: 49B34
MSC: 49J52
MSC: 49K27
MSC: 49K99
MSC: 90C30
MSC: 90C99
idZBL: Zbl 0699.90082
idMR: MR1026511
DOI: 10.21136/AM.1989.104377
.
Date available: 2008-05-20T18:37:59Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104377
.
Reference: [1] J.-P. Aubin I. Ekeland: Applied Nonlinear Analysis.Wiley, New York 1984. MR 0749753
Reference: [2] J. M. Borwein: Multivalued convexity: a unified approach to equality and inequality constraints.Math. Programming 13 (1977), 163-180.
Reference: [3] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590
Reference: [4] P. H. Dien P. H. Sach: Further properties of the regularity of inclusion systems.Preprint 87-21, Inst. of Mathematics, Hanoi 1987.
Reference: [5] J.-В. Hiriart-Urruty: Gradients generalisés de fonctions marginales.SIAM J. Control Optim. 16(1978), 301-316. Zbl 0385.90099, MR 0493610, 10.1137/0316019
Reference: [6] A. D. Ioffe: Necessary and sufficient conditions for a local minimum. Part 1: A reduction theorem and first order conditions.SIAM J. Control Optim. 17 (1979), 245-250. MR 0525025, 10.1137/0317019
Reference: [7] B. N. Pschenichnyi: Convex set-valued mappings and their adjoints.Kibernetika 3 (1972), 94-102 (in Russian).
Reference: [8] B. N. Pschenichnyi: Convex Analysis and Extremal Problems.Nauka, Moscow 1982 (in Russian).
Reference: [9] S. M. Robinson: Generalized equations and their solutions. Part II: Applications to nonlinear programming.Univ. Wisconsin-Madison, Technical Summary Rep. # 2048, 1980.
Reference: [10] R. T. Rockafellar: Directional differentiability of the optimal value function in a nonlinear programming problem.Math. Prog. Study 21 (1984), 213-226. Zbl 0546.90088, MR 0751251, 10.1007/BFb0121219
Reference: [11] P. H. Sach: Regularity, calmness and support principle.Optimization 19 (1988), 13 - 27. Zbl 0648.49016, MR 0926215, 10.1080/02331938808843311
.

Files

Files Size Format View
AplMat_34-1989-6_6.pdf 1.030Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo