Previous |  Up |  Next

Article

Title: On FE-grid relocation in solving unilateral boundary value problems by FEM (English)
Author: Haslinger, Jaroslav
Author: Neittaanmäki, P.
Author: Salmenjoki, K.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 2
Year: 1992
Pages: 105-122
Summary lang: English
.
Category: math
.
Summary: We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional means a decrease of the discretization error or a better approximation of the unilateral boundary conditions. Design sensitivity analysis is given with respect to the movement of nodal points. Numerical results for the Dirichlet-Signorini problem for the Laplace equation and the plane elasticity problem with unilateral boundary conditions are given. In plane elasticity we consider problems with and without friction. (English)
Keyword: unilateral boundary value problem
Keyword: grid relocation
Keyword: finite element methods
Keyword: Poisson equation
Keyword: numerical examples
Keyword: nonlinear optimization
Keyword: sequential quadratic programming code
Keyword: FE-grid relocation
MSC: 35J05
MSC: 65N30
MSC: 65N50
idZBL: Zbl 0757.65114
idMR: MR1149161
DOI: 10.21136/AM.1992.104495
.
Date available: 2008-05-20T18:43:13Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104495
.
Reference: [1] Babuška I., Rank E.: An expert-system-like feedback approach in the fop-version of the finite element method.Finite Elements in Analysis and Design 3 (1987), 127-149.
Reference: [2] Babuška I., Zienkiewicz O.C., Gago J., de A. Oliveira E.R. (eds.): Accuracy Estimates and Adaptive Refinements in Finite Element Computations.J. Wiley & Sons, Chichester, 1986. MR 0879442
Reference: [3] Blum H., Lin Q., Rannacher R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements.Numerische Mathematik 49 (1986), 11-37. Zbl 0594.65082, MR 0847015, 10.1007/BF01389427
Reference: [4] Ciarlet P.G.: The Finite Element Method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] Delfour M., Payre G., Zolésio J. P.: An optimal triangulation for second-order elliptic problems.Computational Methods in Applied Mechanics and Engineering 50 (1985), 231-261. MR 0800331, 10.1016/0045-7825(85)90095-7
Reference: [6] Guo B., Babuška I.: The h-p version of the finite element method.Computational Mechanics, Part 2 1 (1986), 203-220. 10.1007/BF00272624
Reference: [7] Eriksson K., Johnson C.: An adaptive finite element method for linear elliptic problems.Mathematics of Computation 50 (1988), 361-383. Zbl 0644.65080, MR 0929542, 10.1090/S0025-5718-1988-0929542-X
Reference: [8] Haslinger J., Neittaanmäki P.: Finite Element Approximation of Optimal Shape Design. Theory and Approximation.John Wiley & Sons, London, 1988. MR 0982710
Reference: [9] Haslinger J., Neittaanmäki P., Salmenjoki K.: On optimal mesh design for FEM in unilateral boundary value problems.MAFELAP VI, (J.R. Whiteman ed.) (1988), 103-114, Academic Press, London. MR 0956891
Reference: [10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical Solution of Variational Inequalities.Springer Series in Applied Mathematical Sciences 66, Springer-Verlag, Berlin, 1988.
Reference: [11] Jarusch H.: On an adaptive grid refining technique for finite element approximations.SIAM Journal of Scientific and Statical Computations 4 (1986), 1105-1120. MR 0857785, 10.1137/0907075
Reference: [12] Kikuchi N.: Finite Element Methods in Mechanics.Cambridge University Press, London, 1986. Zbl 0587.73102
Reference: [13] Kikuchi N., Oden J. T.: Contact Problems in Elasticity.SIAM Studies in Applied Mathematics, Philadelphia, 1988. Zbl 0685.73002, MR 0961258
Reference: [14] Křížek M., Neittaanmäki P.: On supercoiivergence techniques.Acta Applic. Math. 9 (1987), 175-198. MR 0900263, 10.1007/BF00047538
Reference: [15] Pironneau O.: Optimal shape design for elliptic systems.Springer-Verlag, Berlin, 1984. Zbl 0534.49001, MR 0725856
.

Files

Files Size Format View
AplMat_37-1992-2_2.pdf 1.940Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo