Previous |  Up |  Next

Article

Title: Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems (English)
Author: Voller, Rudolf L.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 2
Year: 1992
Pages: 123-138
Summary lang: English
.
Category: math
.
Summary: In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions. (English)
Keyword: partially ordered space
Keyword: Newton-like iteration
Keyword: affine-invariant
Keyword: monotone including iteration methods
Keyword: systems of nonlinear ordinary differential equations
MSC: 34B15
MSC: 47H07
MSC: 65J15
MSC: 65L10
idZBL: Zbl 0754.65057
idMR: MR1149162
DOI: 10.21136/AM.1992.104496
.
Date available: 2008-05-20T18:43:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104496
.
Reference: [1] Alefeld G.: Monotone Regula-falsi-ähnliche Verfahren bei nichtkonvexen Operatorgleichungen.Beitr. Numer. Math. 8 (1980), 15-30. Zbl 0425.65034, MR 0564583
Reference: [2] Frommer N.: Monotonicity of Brown's Method.Z. Angew. Math. Mech. 68 (1988), 101-110. Zbl 0663.65047, MR 0931771, 10.1002/zamm.19880680211
Reference: [3] Korrnan P., Leung A. W.: A general monotone scheme for elliptic systems with applications to ecological models.Proc. Roy. Soc. Edinb. 102A (1986), 315-325.
Reference: [4] Krasnoselski M.: Positive Solutions of Operator Equations.Noordhoff, Groningen, 1964. MR 0181881
Reference: [5] McKenna P. J., Walter W.: On the Dirichlet Problem for Elliptic Systems.Appl. Anal. 21 (1986), 207-224. Zbl 0593.35042, MR 0840313, 10.1080/00036818608839592
Reference: [6] Ortega J. M., Rheinboldt W.C.: Iterative Solutions of Nonlinear Equations in Several Variables.Acad. Press, New York, 1970. MR 0273810
Reference: [7] Potra F. A.: Newton-like methods with monotone convergence for solving nonlinear operator equations.Nonl. Anal. Th., Meth. Appl. 11 (1987), 697-717. Zbl 0633.65050, MR 0893775, 10.1016/0362-546X(87)90037-X
Reference: [8] Potra F. A.: Monotone iterative methods for nonlinear operator equations.Numer. Funct. Anal. and Optimiz. 9 (1987), 809-843. Zbl 0636.65056, MR 0910856, 10.1080/01630568708816262
Reference: [9] Potra F.A., Rheinboldt W.C.: On the monotone convergence of Newton's method.Computing 36 (1986), 81-90. Zbl 0572.65034, MR 0832932, 10.1007/BF02238194
Reference: [10] Schmidt J. W., Schneider H.: Monoton einschließende Verfahren bei additiv zerlegbaren Gleichungen.Z. Angew. Math. Mech. 63 (1983), 3-11. Zbl 0519.65036, MR 0701830, 10.1002/zamm.19830630103
Reference: [11] Schmidt J. W., Schneider H.: Enclosing methods in perturbated nonlinear operator equations.Comput. 32 (1984), 1-11. MR 0736257, 10.1007/BF02243015
Reference: [12] Voller R. L.: Monoton einschließende Newton-ähnliche Iterationsverfahren in halbgeordneten Räumen mit nicht notwendig regularem Kegel.Dissertation, Düsseldorf 1982.
Reference: [13] Voller R. L.: Iterative Einschließung von Lösungen nichtlinearer Differentialgleichungen durch Newton-ähnliche Iterationsverfahren.Apl. Mat. 31 (1986), 1-18. MR 0836798
Reference: [14] Voss H.: Ein neues Verfahren zur Einschließung der Lösungen von Operatorgleichungen.Z. Angew. Math. Mech. 56 (1976), 218-219. Zbl 0341.65040, MR 0408240, 10.1002/zamm.19760560509
.

Files

Files Size Format View
AplMat_37-1992-2_3.pdf 1.813Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo