Previous |  Up |  Next

Article

Keywords:
incompressibility constraint; Chorin’s projection method; boundary conditions; well-posedness; nonlinear Galerkin method
Summary:
This paper discusses some conceptional questions of the numerical simulation of viscous incompressible flow which are related to the presence of boundaries.
References:
[1] Blum H.: Asymptotic Error Expansion and Defect Correction in the Finite Element Method. Habilitationsschrift, Universität Heidelberg, 1991.
[2] Brezzi F., and J. Pitkäranta: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solution of Elliptic Systems (W. Hackbush, ed.), Vieweg, Braunschweig, 1984. MR 0804083
[3] Bristeau M. O., Glowinski R., and J. Periaux: Numerical methods for the Navier-Stokes equations: Applications to the simulation of compressible and incompressible viscous flows. In Computer Physics Report, Research Report UH/MD-4, University of Houston, 1987. MR 0913308
[4] Chorin A. J.: Numerical solution of the Navier-Stokes equations. Math. Соmр. 22 (1968), 745-762. MR 0242392 | Zbl 0198.50103
[5] Devulder C., Marion M., and E. S.Titi: On the rate of convergence of the nonlinear Galerkin methods. to appear in Math. Соmр.. MR 1160273
[6] Foias C., Manley О., and R. Теmam: Modelling of the interaction of small and large eddies in two dimensional turbulent flows. $M^2$ AN 22 (1988), 93-114. MR 0934703
[7] Girault V., and P. A. Raviart: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin-Heidelberg, 1986. MR 0851383
[8] Gresho P. M., and S. T. Chan: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix Part 1: Theory, Part 2: Implementation. Int. J. Numer. Meth. in Fluids 11 (1990), 587-620, 621-659. DOI 10.1002/fld.1650110509 | MR 1074826
[9] Gresho P. M.: Some current CFD issues relevant to the incompressible Navier-Stokes equations. Соmр. Meth. Appl. Mech. Eng. 87(1991), 201-252. DOI 10.1016/0045-7825(91)90006-R | MR 1118944 | Zbl 0760.76018
[10] Harig J.: A 3-d finite element upwind approximation of the stationary Navier Stokes equations. IWR-Report, Universität Heidelberg, 1991.
[11] Heywood J. G.: On uniqueness questions in the theory of viscous flow. Acta math. 136 (1976), 61-102. DOI 10.1007/BF02392043 | MR 0425390 | Zbl 0347.76016
[12] Heywood J .G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 1: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal 19 (1982), 275-311 DOI 10.1137/0719018 | MR 0650052
[12b] Heywood J. G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 2: Stability of solutions and error estimates uniform in time. ibidem 23, (1986), 750-777 MR 0849281
[12c] Heywood J.G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 3: Smoothing property and higher order error estimates for spatial discretization. ibidem 25 (1988), 489-512 MR 0942204
[12d] Heywood J.G., R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. Part 4: error analysis for second-order time discretization. ibidem 27 (1990), 353-384. MR 1043610
[13] Heywood J. G., Rannacher R., and S.Turek: Artifical boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Universität Heidelberg, April 1992, Preprint. MR 1380844
[14] Heywood J. G., R. Rannacher: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. Universität Heidelberg, May 1992, Preprint. MR 1249035
[15] Hughes T. J. R., Franca L. P., and M. Balestra: A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommoding equal order interpolation. Соmр. Meth. Appl. Mech. Eng. 59 (1986), 85-99. DOI 10.1016/0045-7825(86)90025-3 | MR 0868143
[16] Kracmar S., and J. Neustupa: Global existence of weak solutions of a nonstationary variational inequality of the Navier-Stokes type with mixed boundary conditions. Dept. of Techn. Math., Czech Techn. Univ, Praha, 1992, Preprint.
[17] Marion M., and R. Temam: Nonlinear Galerkin methods: The finite element case. Numer. Math. 57, (1990), 205-226. DOI 10.1007/BF01386407 | MR 1057121
[18] Prohl A., and R. Rannacher: On some pseudo-compressibility methods for the Navier-Stokes equations. in preparation.
[19] Rannacher R.: Numerical analysis of nonstationary fluid flow (a survey). In: Applications of Mathematics in Industry and Technology (V. C. Boffi and H. Neunzert, eds.), Teubner, Stuttgart, 1989, pp. 34-53. MR 1079942
[20] Rannacher R.: On Chorin's projection method for the incompressible Navier-Stokes equations. Springer, (R. Rautmann, et.al., eds.), Proc. Oberwolfach Conf., 19.-23. 8. 1991.
[21] Rannacher R., and S. Turek: Simple nonconforming quadrilateral Stokes elements. Numer. Meth. Part. Diff. Equ. 8 (1992), 97-111. DOI 10.1002/num.1690080202 | MR 1148797
[22] Shen J.: On error estimates of projection methods for the Navier-Stokes equations: First order schemes. SIAM J. Numer. Anal. (1991). MR 1149084
[23] Shen J.: On error estimates of higher order projection and penalty-projection methods for Navier-Stokes equations. Dept. of Math., Indiana University, 1992, Preprint.
[24] Turek S.: Tools for simulating nonstationary incompressible flow via discretely divergence-free finite element models. Universität Heidelberg, May 1992, Preprint. MR 1255036
Partner of
EuDML logo