Previous |  Up |  Next

Article

Title: Experiments with Krylov subspace methods on a massively parallel computer (English)
Author: Hanke, Martin
Author: Hochbruck, Marlis
Author: Niethammer, Wilhelm
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 440-451
Summary lang: English
.
Category: math
.
Summary: In this note, we compare some Krylov subspace iterative methods on the MASPAR, a massively parallel computer with 16K processors. In particular, we apply these methods to solve large sparse nonsymmetric linear systems arising from elliptic partial differential equations. The methods under consideration include conjugate gradient type methods, semiiterative methods, and a hybrid variant. Our numerical results show that, on the MASPAR, one should compare iterative methods rather on the basis of total computing time than on the basis of number of iterations required to achieve a given accuracy. Our limited numerical experiments here suggest that, in terms of total computing time, semiiterative and hybrid methods are very attractive for such MASPAR implementations. (English)
Keyword: massively parallel computers
Keyword: iterative methods
Keyword: nonsymmetric linear systems
Keyword: Krylov subspace methods
Keyword: preconditionings
Keyword: parallel computation
Keyword: Krylov subspace iterative methods
Keyword: conjugate gradient type methods
Keyword: BiCGStab
Keyword: semiiterative methods
Keyword: GMRES-Richardson method
Keyword: successive overrelaxation
Keyword: red-black ordering
MSC: 65F10
MSC: 65W05
MSC: 65Y05
idZBL: Zbl 0810.65030
idMR: MR1241447
DOI: 10.21136/AM.1993.104566
.
Date available: 2008-05-20T18:46:27Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104566
.
Reference: [1] D. Baxter J. Saltz M. Schultz S. Eisenstat, and K. Crowley: An experimental study of methods for parallel preconditioned Krylov methods.Tech. Rep. RR-629, Department of Computer Science, Yale University, 1988.
Reference: [2] M. Eiermann: On semiiterative methods generated by Faber polynomials.Numer. Math. 56 (1989), 139-156. Zbl 0678.65020, MR 1018298, 10.1007/BF01409782
Reference: [3] M. Eiermann W. Niethammer, and R. S. Varga: A study of semiiterative methods for nonsymmetric systems of linear equations.Numer. Math. 47 (1985), 505-533. MR 0812617, 10.1007/BF01389454
Reference: [4] V. Faber, T. Manteuffel: Necessary and sufficient conditions for the existence of a conjugate gradient method.SIAM J. Numer. Anal. 21 (1984), 352-362. Zbl 0546.65010, MR 0736337, 10.1137/0721026
Reference: [5] R. W. Freund G. H. Golub, and N. M. Nachtigal: Iterative solution of linear systems.Acta Numerica 1 (1992), 57-100. MR 1165723, 10.1017/S0962492900002245
Reference: [6] R. W. Freund M. H. Gutknecht, and N. M. Nachtigal: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices.SIAM J. Sci. Statist. Comput. 14 (1993), 137-158. MR 1201315, 10.1137/0914009
Reference: [7] R. W. Freund, N. M. Nachtigal: QMR: a quasi-minimal residual method for non-Hermitian linear systems.Numer. Math. 60 (1991), 315-339. Zbl 0754.65034, MR 1137197, 10.1007/BF01385726
Reference: [8] M. R. Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards 49 (1952), 409-436. Zbl 0048.09901, MR 0060307, 10.6028/jres.049.044
Reference: [9] C. Lanczos: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.J. Res. Nat. Bur. Standards 45 (1950), 255-282. MR 0042791, 10.6028/jres.045.026
Reference: [10] T. A. Manteuffel: The Tchebychev iteration for nonsymmetric linear systems.Numer. Math. 28 (1977), 307-327. Zbl 0361.65024, MR 0474739, 10.1007/BF01389971
Reference: [11] N. M. Nachtigal L. Reichel, L. N. Trefethen: A hybrid GMRES algorithm for nonsymmetric linear systems.SIAM J. Matrix Anal. Appl. 13 (1992), 796-825. MR 1168080, 10.1137/0613050
Reference: [12] W. Niethammer: Iterative solution of non-symmetric systems of linear equations.In: Numerical Mathematics, Singapore 1988 (R. P. Agarwal, Y. M. Chow and S. J. Wilson, eds.), Birkhäuser, Basel, 1988, pp. 381-390. Zbl 0657.65050, MR 1022970
Reference: [13] W. Niethammer, R. S. Varga: The analysis of k-step iterative methods for linear systems from summability theory.Numer. Math. 41 (1983), 177-206. Zbl 0487.65018, MR 0703121, 10.1007/BF01390212
Reference: [14] J. M. Ortega: Introduction to Parallel and Vector Solution of Linear Systems.Plenum Press, New York, London, 1988. Zbl 0669.65017, MR 1106195
Reference: [15] Y. Saad, M. H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput. 7 (1986), 856-869. Zbl 0599.65018, MR 0848568, 10.1137/0907058
Reference: [16] D. C. Smolarski, P. E. Saylor: An optimum iterative method for solving any linear system with a square matrix.BIT 28 (1988), 163-178. Zbl 0636.65025, MR 0928443, 10.1007/BF01934703
Reference: [17] G. Starke, R. S. Varga: A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations.Numer. Math. 64 (1993), 213-240. Zbl 0795.65015, MR 1199286, 10.1007/BF01388688
Reference: [18] C. Tong: The preconditioned conjugate gradient method on the Connection Machine.In: Proceedings of the Conference on Scientific Applications of the Connection Machine (H. Simon, ed.), World Scientific, Singapore, New Jersey, London, Hong Kong, 1989, pp. 188-213. Zbl 0725.65033
Reference: [19] H. A. Van der Vorst: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems.SIAM J. Sci. Statist. Comput. 13 (1992), 631-644. Zbl 0761.65023, MR 1149111, 10.1137/0913035
Reference: [20] R. S. Varga: Matrix Iterative Analysis.Prentice Hall, Englewood Cliffs, New Jersey, 1962. MR 0158502
.

Files

Files Size Format View
AplMat_38-1993-6_4.pdf 16.39Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo